Solveeit Logo

Question

Question: Find the value of \[\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{...

Find the value of limx11x131x23\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}.

Explanation

Solution

Here, we have to find the value of limx11x131x23\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}. If we take the limit x1x \to 1 we get 00\dfrac{0}{0} which is an indeterminate form, so its limit can be calculated by the “L’HOPITAL’S” rule. Firstly, differentiate the numerator and denominator with respect to xx then find the limit x1x \to 1.

Complete step-by-step solution:
Given, we have to find the value of limx11x131x23\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}}.
By taking the limit x1x \to 1 of 1x131x23\dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}} we get 00\dfrac{0}{0} which is an indeterminate form.
Here, we have to apply the “L’HOPITAL’S” rule. According to which we have to differentiate the numerator and differentiate the denominator with respect to xx. So, by differentiating we can write limx11x131x23\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}} as
limx1(13x131)(23x231) limx113x4323x53 \Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{ - \left( { - \dfrac{1}{3}{x^{ - \dfrac{1}{3} - 1}}} \right)}}{{ - \left( { - \dfrac{2}{3}{x^{ - \dfrac{2}{3} - 1}}} \right)}} \\\ \Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{\dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}}}}{{\dfrac{2}{3}{x^{\dfrac{{ - 5}}{3}}}}}
Now, by taking limit x1x \to 1 we get
13(1)23(1)=12\Rightarrow \dfrac{{\dfrac{1}{3}\left( 1 \right)}}{{\dfrac{2}{3}\left( 1 \right)}} = \dfrac{1}{2}

Thus, the value of limx11x131x23\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}} is 12\dfrac{1}{2}.

Note: L’HOPITL’S Rule:
If limxaf(x)g(x)=00\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{0}{0} or limxaf(x)g(x)=\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{\infty }{\infty }, then limxaf(x)g(x)\mathop {\lim }\limits_{x \to a} \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}} is the required result.
So, this rule tells us that if we get 00\dfrac{0}{0} or \dfrac{\infty }{\infty } which is an indeterminate form then all we need to do is differentiate the numerator and differentiate the denominator and then take the limit xax \to awhich gives the required result.
Alternate method:
This can be solved by simply arranging the terms of the numerator and the denominator. We observed that the denominator of the given fraction is 1x231 - {x^{\dfrac{{ - 2}}{3}}} which can also be written as (1)2(x13)2{\left( 1 \right)^2} - {\left( {{x^{\dfrac{{ - 1}}{3}}}} \right)^2}. Then, by using a mathematical identity a2b2=(ab)(a+b){a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right), we can write (1)2(x13)2{\left( 1 \right)^2} - {\left( {{x^{\dfrac{{ - 1}}{3}}}} \right)^2}as (1x13)(1+x13)\left( {1 - {x^{\dfrac{{ - 1}}{3}}}} \right)\left( {1 + {x^{\dfrac{{ - 1}}{3}}}} \right).
So, the given fraction 1x131x23\dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}} can be written as (1x13)(1x13)(1+x13)\dfrac{{\left( {1 - {x^{\dfrac{{ - 1}}{3}}}} \right)}}{{\left( {1 - {x^{\dfrac{{ - 1}}{3}}}} \right)\left( {1 + {x^{\dfrac{{ - 1}}{3}}}} \right)}}.
The term (1x13)\left( {1 - {x^{\dfrac{{ - 1}}{3}}}} \right) is present in both the numerator and the denominator so, it is cancelled out and the limx11x131x23\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^{\dfrac{{ - 1}}{3}}}}}{{1 - {x^{\dfrac{{ - 2}}{3}}}}} can be written as limx111+x13\mathop {\lim }\limits_{x \to 1} \dfrac{1}{{1 + {x^{\dfrac{{ - 1}}{3}}}}}. Then we have to take its limit x1x \to 1.