Solveeit Logo

Question

Question: Find the value of \(\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{\sqrt {1 - \cos (2(x - 2))} }}{...

Find the value of limx2(1cos(2(x2))x2)\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{\sqrt {1 - \cos (2(x - 2))} }}{{x - 2}}} \right)
A. does not exist
B. equal 2\sqrt 2
C. equal - 2\sqrt 2
D. equal 12\dfrac{1}{{\sqrt 2 }}

Explanation

Solution

In this question, firstly we will try to find the indeterminate form, if any. There are seven types of indeterminate forms which are considered,
00,,0×,,00,1,0\dfrac{0}{0},\dfrac{\infty }{\infty },0 \times \infty ,\infty - \infty ,{0^0},{1^\infty },{\infty ^0}.Now we know that there are different methods of solving every indeterminate form.Hence after knowing the indeterminate form we will accordingly solve the given limit.Also, if needed we will also find the left-hand limit and right-hand limit.

Formula used:
Complete step-by-step answer:
We are given that limx2(1cos(2(x2))x2)\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{\sqrt {1 - \cos (2(x - 2))} }}{{x - 2}}} \right) (1) - - - - - (1)
Indeterminate form is an expression involving two functions whose limit cannot be determined solely from the limits of the individual functions.
There are seven types of indeterminate forms which are considered,
00,,0×,,00,1,0\dfrac{0}{0},\dfrac{\infty }{\infty },0 \times \infty ,\infty - \infty ,{0^0},{1^\infty },{\infty ^0}
Firstly, we need to find the indeterminate form, if any.
As x2,x2=0x \to 2,x - 2 = 0
And x2,1cos(2(x2))=0x \to 2,\sqrt {1 - \cos (2(x - 2))} = 0
So for this limit we have
(1cos(2(x2))x2)=00\left( {\dfrac{{\sqrt {1 - \cos (2(x - 2))} }}{{x - 2}}} \right) = \dfrac{0}{0}
Hence the indeterminate form 00\dfrac{0}{0} is present in (1)
Now we will consider limit (1),
limx2(1cos(2(x2))x2)\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{\sqrt {1 - \cos (2(x - 2))} }}{{x - 2}}} \right)
Now we know that the trigonometric formula,
cos2θ=12sin2θ\cos 2\theta = 1 - 2{\sin ^2}\theta (2) - - - - - (2)
Now substituting this value in (1), where θ=x2\theta = x - 2, we get
limx2(1cos(2(x2))x2)\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{\sqrt {1 - \cos (2(x - 2))} }}{{x - 2}}} \right) =limx2(1(12sin2(x2))x2) = \mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{\sqrt {1 - (1 - 2{{\sin }^2}(x - 2))} }}{{x - 2}}} \right)
=limx2(2sin2(x2))x2)= \mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{\sqrt {2{{\sin }^2}(x - 2))} }}{{x - 2}}} \right)
We know thatx2=x\sqrt {{x^2}} = \left| x \right|, so using this we get that
limx2(1cos(2(x2))x2)\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{\sqrt {1 - \cos (2(x - 2))} }}{{x - 2}}} \right) =limx22sin(x2)x2 = \mathop {\lim }\limits_{x \to 2} \dfrac{{\left| {\sqrt 2 \sin (x - 2)} \right|}}{{x - 2}}
Now 2\sqrt 2 is always positive, so we get that 2=2\left| {\sqrt 2 } \right| = \sqrt 2 , and also ab=a×b\left| {ab} \right| = \left| a \right| \times \left| b \right|, we get
limx2(1cos(2(x2))x2)\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{\sqrt {1 - \cos (2(x - 2))} }}{{x - 2}}} \right) =limx22sin(x2)x2 = \mathop {\lim }\limits_{x \to 2} \dfrac{{\sqrt 2 \left| {\sin (x - 2)} \right|}}{{x - 2}}
Now we cannot solve this limit directly because modulus is involved here, now we consider here the right-hand limit and left-hand limit-
Firstly, taking right-hand limit, we get
RHL==limx2+2sin(x2)x2RHL = = \mathop {\lim }\limits_{x \to 2 + } \dfrac{{\sqrt 2 \left| {\sin (x - 2)} \right|}}{{x - 2}}
Now asx2+,x2>0x \to 2 + , \Rightarrow x - 2 > 0, so
We get sin(x2)>0\sin (x - 2) > 0, and we know that if x>0,x=xx > 0, \Rightarrow \left| x \right| = x, we get
RHL==limx2+2sin(x2)x2RHL = = \mathop {\lim }\limits_{x \to 2 + } \dfrac{{\sqrt 2 \sin (x - 2)}}{{x - 2}}
Now as we know that limx0sinxx=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1, so we get
RHL=limx22sin(x2)x2RHL = \mathop {\lim }\limits_{x \to 2} \dfrac{{\sqrt 2 \sin (x - 2)}}{{x - 2}} =2= \sqrt 2
Now we consider the left-hand limit
LHL=limx22sin(x2)x2LHL = \mathop {\lim }\limits_{x \to 2 - } \dfrac{{\sqrt 2 \left| {\sin (x - 2)} \right|}}{{x - 2}}
Now as x2,x2<0x \to 2 - ,x - 2 < 0
sin(x2)<0\sin (x - 2) < 0, and we know that if x<0,x=xx < 0, \Rightarrow \left| x \right| = - x
LHL=limx22sin(x2)x2LHL = \mathop {\lim }\limits_{x \to 2} \dfrac{{ - \sqrt 2 \sin (x - 2)}}{{x - 2}}
Again, we know limx0sinxx=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1
Hence,
LHL=limx22sin(x2)x2=2LHL = \mathop {\lim }\limits_{x \to 2} \dfrac{{ - \sqrt 2 \sin (x - 2)}}{{x - 2}} = - \sqrt 2
Hence, we get LHL=2LHL = - \sqrt 2 and RHL=2RHL = \sqrt 2
So, we get that LHLRHLLHL \ne RHL
Now we know that if for any function LHLRHLLHL \ne RHL.
Hence for (1) limit does not exist.

So, the correct answer is “Option A”.

Note: In this question we get,
limx2(1cos(2(x2))x2)\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{\sqrt {1 - \cos (2(x - 2))} }}{{x - 2}}} \right) =limx22sin(x2)x2 = \mathop {\lim }\limits_{x \to 2} \dfrac{{\sqrt 2 \left| {\sin (x - 2)} \right|}}{{x - 2}}
We generally do not consider modulus and proceed further which will give us the wrong answer. Because sin(x2)sin(x2)\left| {\sin \left( {x - 2} \right)} \right| \ne \sin \left( {x - 2} \right) for x2x \to 2.So, this is an important thing to notice.
Also remember that limx0sinxx\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} is equal to one, we can see this directly using the series of sinx\sin x,
sinx=xx3!3+x5!5x7!7+\sin x = x - \dfrac{{{x^3}}}{{\left| \\!{\underline {\, 3 \,}} \right. }} + \dfrac{{{x^5}}}{{\left| \\!{\underline {\, 5 \,}} \right. }} - \dfrac{{{x^7}}}{{\left| \\!{\underline {\, 7 \,}} \right. }} + - - - - - .