Solveeit Logo

Question

Question: Find the value of \[\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {ab} \right)}^x} - {a^x} - {b^...

Find the value of limx0(ab)xaxbx+1x2=\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {ab} \right)}^x} - {a^x} - {b^x} + 1}}{{{x^2}}} =
A) logalogb\log a\log b
B) log(ab)\log \left( {ab} \right)
C) log(ab)\log \left( {\dfrac{a}{b}} \right)
D) log(ba)\log \left( {\dfrac{b}{a}} \right)

Explanation

Solution

We can apply the limits directly. If we get the limit as 00\dfrac{0}{0}, we can apply L’ hospital’s rule. So, we can take the derivative of the numerator and denominator. Then we can again apply the limits and apply L’ hospital’s rule if we get the limit as 00\dfrac{0}{0}. Then we can take the derivative of the numerator and denominator and apply the limits to get the required limit.

Complete step by step solution:
We need to find limx0(ab)xaxbx+1x2\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {ab} \right)}^x} - {a^x} - {b^x} + 1}}{{{x^2}}}
Let L=limx0(ab)xaxbx+1x2L = \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {ab} \right)}^x} - {a^x} - {b^x} + 1}}{{{x^2}}}
On applying the limits, we get
L=(ab)0a0b0+102\Rightarrow L = \dfrac{{{{\left( {ab} \right)}^0} - {a^0} - {b^0} + 1}}{{{0^2}}}
We know that a0=1{a^0} = 1, so we get
L=111+10\Rightarrow L = \dfrac{{1 - 1 - 1 + 1}}{0}
On simplification, we get
L=00\Rightarrow L = \dfrac{0}{0}
As the limit is 00\dfrac{0}{0}, we can apply L’ hospital’s rule.
We know that by L’ hospital’s rule, If limxaf(x)g(x)=00\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{0}{0}, then limxaf(x)g(x)=limxaf(x)g(x)\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to a} \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}
Here, we have f(x)=(ab)xaxbx+1f\left( x \right) = {\left( {ab} \right)^x} - {a^x} - {b^x} + 1 and g(x)=x2g\left( x \right) = {x^2}
Now we can take the derivatives.
f(x)=ddx[(ab)xaxbx+1]\Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left[ {{{\left( {ab} \right)}^x} - {a^x} - {b^x} + 1} \right]
We know that ddxax=axloga\dfrac{d}{{dx}}{a^x} = {a^x}\log a. So, we get
f(x)=(ab)xlogabaxlogabxlogb+0\Rightarrow f'\left( x \right) = {\left( {ab} \right)^x}\log ab - {a^x}\log a - {b^x}\log b + 0
Similarly, we can write
g(x)=2x\Rightarrow g'\left( x \right) = 2x
So, the limit will become,
L=limx0f(x)g(x)\Rightarrow L = \mathop {\lim }\limits_{x \to 0} \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}
On substituting the values, we get
L=limx0(ab)xlogabaxlogabxlogb2x\Rightarrow L = \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {ab} \right)}^x}\log ab - {a^x}\log a - {b^x}\log b}}{{2x}}
On applying the limits, we get
L=(ab)0logaba0logab0logb2×0\Rightarrow L = \dfrac{{{{\left( {ab} \right)}^0}\log ab - {a^0}\log a - {b^0}\log b}}{{2 \times 0}}
We know that a0=1{a^0} = 1, so we get
L=logablogalogb2×0\Rightarrow L = \dfrac{{\log ab - \log a - \log b}}{{2 \times 0}}
We know that logab=loga+logb\log ab = \log a + \log b, so we get
L=loga+logblogalogb2×0\Rightarrow L = \dfrac{{\log a + \log b - \log a - \log b}}{{2 \times 0}}
On simplification, we get
L=00\Rightarrow L = \dfrac{0}{0}
Again, the limit is 00\dfrac{0}{0}. So, we can apply L’ hospital’s rule.
Here, we have f(x)=(ab)xlogabaxlogabxlogbf\left( x \right) = {\left( {ab} \right)^x}\log ab - {a^x}\log a - {b^x}\log b and g(x)=2xg\left( x \right) = 2x
Now we can take the derivatives.
f(x)=ddx[(ab)xlogabaxlogabxlogb]\Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left[ {{{\left( {ab} \right)}^x}\log ab - {a^x}\log a - {b^x}\log b} \right]
We know that ddxax=axloga\dfrac{d}{{dx}}{a^x} = {a^x}\log a. So, we get
f(x)=(ab)x(logab)2ax(loga)2bx(logb)2\Rightarrow f'\left( x \right) = {\left( {ab} \right)^x}{\left( {\log ab} \right)^2} - {a^x}{\left( {\log a} \right)^2} - {b^x}{\left( {\log b} \right)^2}
Similarly, we can write
g(x)=2\Rightarrow g'\left( x \right) = 2
So, the limit will become
L=limx0f(x)g(x)\Rightarrow L = \mathop {\lim }\limits_{x \to 0} \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}
On substituting the values, we get
L=limx0(ab)x(logab)2ax(loga)2bx(logb)22\Rightarrow L = \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {ab} \right)}^x}{{\left( {\log ab} \right)}^2} - {a^x}{{\left( {\log a} \right)}^2} - {b^x}{{\left( {\log b} \right)}^2}}}{2}
On applying the limits, we get
L=(ab)0(logab)2a0(loga)2b0(logb)22\Rightarrow L = \dfrac{{{{\left( {ab} \right)}^0}{{\left( {\log ab} \right)}^2} - {a^0}{{\left( {\log a} \right)}^2} - {b^0}{{\left( {\log b} \right)}^2}}}{2}
We know that a0=1{a^0} = 1, so we get
L=(logab)2(loga)2(logb)22\Rightarrow L = \dfrac{{{{\left( {\log ab} \right)}^2} - {{\left( {\log a} \right)}^2} - {{\left( {\log b} \right)}^2}}}{2}
We know that logab=loga+logb\log ab = \log a + \log b, so we get
L=(loga+logb)2(loga)2(logb)22\Rightarrow L = \dfrac{{{{\left( {\log a + \log b} \right)}^2} - {{\left( {\log a} \right)}^2} - {{\left( {\log b} \right)}^2}}}{2}
On expanding the square using the identity (x+y)2=x2+2xy+y2{\left( {x + y} \right)^2} = {x^2} + 2xy + {y^2}, we get
L=(loga)2+(logb)2+2logalogb(loga)2(logb)22\Rightarrow L = \dfrac{{{{\left( {\log a} \right)}^2} + {{\left( {\log b} \right)}^2} + 2\log a\log b - {{\left( {\log a} \right)}^2} - {{\left( {\log b} \right)}^2}}}{2}
On simplification, we get
L=2logalogb2\Rightarrow L = \dfrac{{2\log a\log b}}{2}
On cancelling the common terms, we get
L=logalogb\Rightarrow L = \log a\log b
Therefore, the required limit is logalogb\log a\log b.
**
So, the correct answer is option A.**

Note:
We can use only the L’ hospital’s rule when the limit is of the form 00\dfrac{0}{0} or \dfrac{\infty }{\infty } . We must identify the functions of numerator and denominator and find their derivative separately. We cannot expand the log of the sum of 2 numbers as the sum of their logarithms. We must use brackets wherever needed to avoid errors. We cannot take the 2nd{2^{nd}} derivative directly. We must check the limit after taking the 1st{1^{st}} derivative before taking the 2nd{2^{nd}} derivative.