Solveeit Logo

Question

Question: Find the value of \(\mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\log \left( {1 + 9x} \right)}}{...

Find the value of limx0[log(1+9x)x]\mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\log \left( {1 + 9x} \right)}}{x}} \right]

Explanation

Solution

We can see this is 00\dfrac{0}{0} form then we can use L’ Hospital rule in which we differentiate numerator and denominator with respect to x and check whether any form of limit is coming or not if not we can substitute x=0. And get the value of the limit.

Complete step-by-step answer:
limx0[log(1+9x)x]\mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\log \left( {1 + 9x} \right)}}{x}} \right]
Using l’ hospitals rule
limx0[dlog(1+9x)dxdxdx]\mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\dfrac{{d\log \left( {1 + 9x} \right)}}{{dx}}}}{{\dfrac{{dx}}{{dx}}}}} \right]
limx0[91+9x1]\Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\dfrac{9}{{1 + 9x}}}}{1}} \right]
limx0[91+9x]\Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{9}{{1 + 9x}}} \right]
When we substitute x=0 then limit has a finite value
limx0[log(1+9x)x]=9\mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\log \left( {1 + 9x} \right)}}{x}} \right] = 9

Note: If limx0f(x)=limx0+f(x)=limx0f(x)\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right)then we can find the limit of the given question left hand limit.
Alternative method :-
It is known as limx0[log(1+x)x]=1\mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\log \left( {1 + x} \right)}}{x}} \right] = 1
Multiply numerator and denominator by 9 we get
limx0[9log(1+9x)9x]\mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{9\log \left( {1 + 9x} \right)}}{{9x}}} \right]=9 limx0[log(1+9x)9x]\mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\log \left( {1 + 9x} \right)}}{{9x}}} \right]=9