Solveeit Logo

Question

Question: Find the value of \(\mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{(\sin x)(\cos x - \sin x - 1) +...

Find the value of limx0[(sinx)(cosxsinx1)+(cosx)(sinx+cosx1)x]\mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{(\sin x)(\cos x - \sin x - 1) + (\cos x)(\sin x + \cos x - 1)}}{x}} \right]

Explanation

Solution

Hint: In this question you need to find out the value of the given limit. Substitute in place of xx as 0, you will get 00\dfrac{0}{0} form. Then use the L'Hospital rule that is differentiating numerator and denominator separately and substitute ‘x’ as 0 to get the answer.

Complete step-by-step answer :
Consider limit given,
limx0[(sinx)(cosxsinx1)+(cosx)(sinx+cosx1)x]\Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{(\sin x)(\cos x - \sin x - 1) + (\cos x)(\sin x + \cos x - 1)}}{x}} \right]---(1)
Now put x=0x = 0
(sin0)(cos0sin01)+(cos0)(sin0+cos01)0\Rightarrow \dfrac{{(\sin 0)(\cos 0 - \sin 0 - 1) + (\cos 0)(\sin 0 + \cos 0 - 1)}}{0}
We know that sin0=0\sin 0 = 0 and cos0=1\cos 0 = 1
(0)(101)+1(0+11)0\Rightarrow \dfrac{{(0)(1 - 0 - 1) + 1(0 + 1 - 1)}}{0}
00\Rightarrow \dfrac{0}{0}
Thus you will get 00\dfrac{0}{0} form. If it is of 00\dfrac{0}{0} form, then you need to apply L’hospital rule.
So, according to L’Hospital rule differentiate numerator and denominator separately with respect to xx
Now applying L’Hospital rule for equation (1),
limx0[ddx(sinx)(cosxsinx1)+ddx(cosx)(sinx+cosx1)ddx(x)]\Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\dfrac{d}{{dx}}(\sin x)(\cos x - \sin x - 1) + \dfrac{d}{{dx}}(\cos x)(\sin x + \cos x - 1)}}{{\dfrac{d}{{dx}}(x)}}} \right]---(2)
Applying product rule for equation (2),
Product  rule=[ddx(uv)=uddx(v)+vddx(u)]Product\;rule = \left[ {\dfrac{d}{{dx}}(uv) = u\dfrac{d}{{dx}}(v) + v\dfrac{d}{{dx}}(u)} \right]
limx0[[sinxddx(cosxsinx1)+(cosxsinx1)ddx(sinx)+(cosx)ddx(sinx+cosx1)+(sinx+cosx1)ddx(cosx)]ddx(x)]\Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\left[ {\sin x\dfrac{d}{{dx}}(\cos x - \sin x - 1) + (\cos x - \sin x - 1)\dfrac{d}{{dx}}(\sin x) + (\cos x)\dfrac{d}{{dx}}(\sin x + \cos x - 1) + (\sin x + \cos x - 1)\dfrac{d}{{dx}}(\cos x)} \right]}}{{\dfrac{d}{{dx}}(x)}}} \right]
We know that,
ddx(1)=0\dfrac{d}{{dx}}(1) = 0, ddx(x)=1\dfrac{d}{{dx}}(x) = 1, ddx(sinx)=cosx\dfrac{d}{{dx}}(\sin x) = \cos x and ddx(cosx)=sinx\dfrac{d}{{dx}}(\cos x) = - \sin x
After differentiating i.e., by using formula we get,
limx0[sinx(sinxcosx0)+(cosxsinx1)(cosx)+(cosx)(cosxsinx0)+(sinx)(sinx+cosx1)]\Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\sin x( - \sin x - \cos x - 0) + (\cos x - \sin x - 1)(\cos x) + (\cos x)(\cos x - \sin x - 0) + ( - \sin x)(\sin x + \cos x - 1)} \right]
On simplification we get,
limx0[sinx(sinxcosx)+(cosxsinx1)cosx+cosx(cosxsinx)sinx(sinx+cosx1)]\Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\sin x( - \sin x - \cos x) + (\cos x - \sin x - 1)\cos x + \cos x(\cos x - \sin x) - \sin x(\sin x + \cos x - 1)} \right]
Multiply the terms and solve,
limx0[sin2xsinxcosx+cos2xsinxcosxcosx+cos2xsinxcosxsin2xsinxcosx+sinx]\Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ { - {{\sin }^2}x - \sin x\cos x + {{\cos }^2}x - \sin x\cos x - \cos x + {{\cos }^2}x - \sin x\cos x - {{\sin }^2}x - \sin x\cos x + \sin x} \right]
limx0[2cos2x2sin2x4sinxcosxsinxcosx]\Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {2{{\cos }^2}x - 2{{\sin }^2}x - 4\sin x\cos x - \sin x - \cos x} \right]
Now replace xx by 0 we get,
2cos2(0)2sin2(0)4sin(0)cos(0)sin(0)cos(0)\Rightarrow 2{\cos ^2}(0) - 2{\sin ^2}(0) - 4\sin (0)\cos (0) - \sin (0) - \cos (0)
2(1)22(0)4(0)(1)01\Rightarrow 2{(1)^2} - 2(0) - 4(0)(1) - 0 - 1
21\Rightarrow 2 - 1
1\Rightarrow 1
Hence, the value is 1.

Note: To solve such questions check for 00\dfrac{0}{0} form then only apply L’Hospital rule. And good understanding of the product rule of derivatives helps getting on the right track to reach the answer.