Question
Question: Find the value of \(\mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{(\sin x)(\cos x - \sin x - 1) +...
Find the value of x→0lim[x(sinx)(cosx−sinx−1)+(cosx)(sinx+cosx−1)]
Solution
Hint: In this question you need to find out the value of the given limit. Substitute in place of x as 0, you will get 00 form. Then use the L'Hospital rule that is differentiating numerator and denominator separately and substitute ‘x’ as 0 to get the answer.
Complete step-by-step answer :
Consider limit given,
⇒x→0lim[x(sinx)(cosx−sinx−1)+(cosx)(sinx+cosx−1)]---(1)
Now put x=0
⇒0(sin0)(cos0−sin0−1)+(cos0)(sin0+cos0−1)
We know that sin0=0 and cos0=1
⇒0(0)(1−0−1)+1(0+1−1)
⇒00
Thus you will get 00 form. If it is of 00 form, then you need to apply L’hospital rule.
So, according to L’Hospital rule differentiate numerator and denominator separately with respect to x
Now applying L’Hospital rule for equation (1),
⇒x→0limdxd(x)dxd(sinx)(cosx−sinx−1)+dxd(cosx)(sinx+cosx−1)---(2)
Applying product rule for equation (2),
Productrule=[dxd(uv)=udxd(v)+vdxd(u)]
⇒x→0limdxd(x)[sinxdxd(cosx−sinx−1)+(cosx−sinx−1)dxd(sinx)+(cosx)dxd(sinx+cosx−1)+(sinx+cosx−1)dxd(cosx)]
We know that,
dxd(1)=0, dxd(x)=1, dxd(sinx)=cosx and dxd(cosx)=−sinx
After differentiating i.e., by using formula we get,
⇒x→0lim[sinx(−sinx−cosx−0)+(cosx−sinx−1)(cosx)+(cosx)(cosx−sinx−0)+(−sinx)(sinx+cosx−1)]
On simplification we get,
⇒x→0lim[sinx(−sinx−cosx)+(cosx−sinx−1)cosx+cosx(cosx−sinx)−sinx(sinx+cosx−1)]
Multiply the terms and solve,
⇒x→0lim[−sin2x−sinxcosx+cos2x−sinxcosx−cosx+cos2x−sinxcosx−sin2x−sinxcosx+sinx]
⇒x→0lim[2cos2x−2sin2x−4sinxcosx−sinx−cosx]
Now replace x by 0 we get,
⇒2cos2(0)−2sin2(0)−4sin(0)cos(0)−sin(0)−cos(0)
⇒2(1)2−2(0)−4(0)(1)−0−1
⇒2−1
⇒1
Hence, the value is 1.
Note: To solve such questions check for 00 form then only apply L’Hospital rule. And good understanding of the product rule of derivatives helps getting on the right track to reach the answer.