Solveeit Logo

Question

Question: Find the value of \(\mathop {\lim }\limits_{\theta \to \dfrac{\pi }{2}} \dfrac{{1 - \sin \theta }}{{...

Find the value of limθπ21sinθ(π2θ)cosθ\mathop {\lim }\limits_{\theta \to \dfrac{\pi }{2}} \dfrac{{1 - \sin \theta }}{{\left( {\dfrac{\pi }{2} - \theta } \right)\cos \theta }}.
A. 11
B. 1 - 1
C. 12\dfrac{1}{2}
D. 12 - \dfrac{1}{2}

Explanation

Solution

The given question requires us to evaluate a limit. A limit is the value that a function (or sequence) approaches as the input (or index) approaches some value. There are various methods and steps to evaluate a limit. Some of the common steps while solving limits involve rationalization and applying some basic results on frequently used limits. L’Hospital’s rule involves solving limits of indeterminate form by differentiating both numerator and denominator with respect to the variable separately and then applying the required limit.

Complete step by step answer:
We have to evaluate limit limθπ21sinθ(π2θ)cosθ\mathop {\lim }\limits_{\theta \to \dfrac{\pi }{2}} \dfrac{{1 - \sin \theta }}{{\left( {\dfrac{\pi }{2} - \theta } \right)\cos \theta }} using L’Hospital’s rule. So, if we put the limit x tending to (π2)\left( {\dfrac{\pi }{2}} \right) into the expression 1sinθ(π2θ)cosθ\dfrac{{1 - \sin \theta }}{{\left( {\dfrac{\pi }{2} - \theta } \right)\cos \theta }}, we get an indeterminate form limit. Hence, L’Hospital’s rule can be applied here to find the value of the concerned limit.

So, Applying L’Hospital’s rule, we have to differentiate both numerator and denominator with respect to the variable θ\theta separately and then apply the limit.
Hence, limθπ21sinθ(π2θ)cosθ\mathop {\lim }\limits_{\theta \to \dfrac{\pi }{2}} \dfrac{{1 - \sin \theta }}{{\left( {\dfrac{\pi }{2} - \theta } \right)\cos \theta }}
Now, the derivative of sinθ\sin \theta is cosθ\cos \theta and the derivative of cosθ\cos \theta is sinθ\sin \theta . Also, we must know the product rule of differentiation d[f(x)×g(x)]dx=f(x)g(x)+g(x)f(x)\dfrac{{d\left[ {f\left( x \right) \times g\left( x \right)} \right]}}{{dx}} = f\left( x \right)g'\left( x \right) + g\left( x \right)f'\left( x \right) to find derivative of the denominator. So, we get,
limθπ2cosθ(π2θ)(sinθ)+cosθ(1)\mathop {\lim }\limits_{\theta \to \dfrac{\pi }{2}} \dfrac{{ - \cos \theta }}{{\left( {\dfrac{\pi }{2} - \theta } \right)\left( { - \sin \theta } \right) + \cos \theta \left( { - 1} \right)}}

Now, simplifying the expression, we get,
limθπ2cosθ(θπ2)sinθcosθ\mathop {\lim }\limits_{\theta \to \dfrac{\pi }{2}} \dfrac{{ - \cos \theta }}{{\left( {\theta - \dfrac{\pi }{2}} \right)\sin \theta - \cos \theta }}
But still if we substitute the limit x tending to (π2)\left( {\dfrac{\pi }{2}} \right) into the expression cosθ(θπ2)sinθcosθ\dfrac{{ - \cos \theta }}{{\left( {\theta - \dfrac{\pi }{2}} \right)\sin \theta - \cos \theta }}, we get an indeterminate form limit. So, we apply the L’Hospital’s rule one more time. Differentiating the numerator and denominator with respect to θ\theta , we get,
limθπ2(sinθ)(θπ2)(cosθ)+sinθ(1)(sinθ)\mathop {\lim }\limits_{\theta \to \dfrac{\pi }{2}} \dfrac{{ - \left( { - \sin \theta } \right)}}{{\left( {\theta - \dfrac{\pi }{2}} \right)\left( {\cos \theta } \right) + \sin \theta \left( 1 \right) - \left( { - \sin \theta } \right)}}

Simplifying the expression, we get,
limθπ2sinθ(θπ2)(cosθ)+2sinθ\mathop {\lim }\limits_{\theta \to \dfrac{\pi }{2}} \dfrac{{\sin \theta }}{{\left( {\theta - \dfrac{\pi }{2}} \right)\left( {\cos \theta } \right) + 2\sin \theta }}
Now substituting the value of limit x tending to (π2)\left( {\dfrac{\pi }{2}} \right) into the expression, we get,
sin(π2)(π2π2)(cosπ2)+2sin(π2)\dfrac{{\sin \left( {\dfrac{\pi }{2}} \right)}}{{\left( {\dfrac{\pi }{2} - \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{2}} \right) + 2\sin \left( {\dfrac{\pi }{2}} \right)}}
Now, we know that the value of sinπ2\sin \dfrac{\pi }{2} is 11 and cosπ2\cos \dfrac{\pi }{2} is 00. So, we get,
10×0+2(1)\dfrac{1}{{0 \times 0 + 2\left( 1 \right)}}
12\therefore \dfrac{1}{2}
So, the value of the limit limθπ21sinθ(π2θ)cosθ\mathop {\lim }\limits_{\theta \to \dfrac{\pi }{2}} \dfrac{{1 - \sin \theta }}{{\left( {\dfrac{\pi }{2} - \theta } \right)\cos \theta }} is (12)\left( {\dfrac{1}{2}} \right).

Hence, option C is the correct answer.

Note: Always check before evaluating the problem whether it is of indeterminate or determinate form. Remember the L’Hospital’s rule for evaluating the indeterminate forms. If the limit is of determinate form, then we can substitute the value of limit directly into the expression and get to the final answer. If the limit is of indeterminate form, we use the L’Hospital rule to convert it into determinate form and then substitute the limit.