Solveeit Logo

Question

Question: Find the value of \( m \) if \( \sin \dfrac{\pi }{{14}}\sin \dfrac{{3\pi }}{{14}}\sin \dfrac{{5\pi }...

Find the value of mm if sinπ14sin3π14sin5π14sin7π14sin9π14sin11π14sin13π14=1m\sin \dfrac{\pi }{{14}}\sin \dfrac{{3\pi }}{{14}}\sin \dfrac{{5\pi }}{{14}}\sin \dfrac{{7\pi }}{{14}}\sin \dfrac{{9\pi }}{{14}}\sin \dfrac{{11\pi }}{{14}}\sin \dfrac{{13\pi }}{{14}} = \dfrac{1}{m} find mm .

Explanation

Solution

Hint : Let us say there is an angle A. Then sine of angle A will be cosine of (90A)\left( {{{90}^ \circ } - A} \right) . 90 degrees can also be written as π2\dfrac{\pi }{2} radians. Use this info and below mentioned formulas to find the value of LHS of the given trigonometric equation. And then equate the obtained value with RHS to find the value of m.
Formulas used:

  1. sinθ=cos(π2θ)\sin \theta = \cos \left( {\dfrac{\pi }{2} - \theta } \right)
  2. sin(πθ)=sinθ\sin \left( {\pi - \theta } \right) = \sin \theta
  3. cos(θ)=cosθ\cos \left( { - \theta } \right) = \cos \theta
  4. 2sinθcosθ=sin(2θ)2\sin \theta \cos \theta = \sin \left( {2\theta } \right)

Complete step-by-step answer :
The given trigonometric equation is sinπ14sin3π14sin5π14sin7π14sin9π14sin11π14sin13π14=1m\sin \dfrac{\pi }{{14}}\sin \dfrac{{3\pi }}{{14}}\sin \dfrac{{5\pi }}{{14}}\sin \dfrac{{7\pi }}{{14}}\sin \dfrac{{9\pi }}{{14}}\sin \dfrac{{11\pi }}{{14}}\sin \dfrac{{13\pi }}{{14}} = \dfrac{1}{m}
Considering the LHS:
sinπ14sin3π14sin5π14sin7π14sin9π14sin11π14sin13π14\sin \dfrac{\pi }{{14}}\sin \dfrac{{3\pi }}{{14}}\sin \dfrac{{5\pi }}{{14}}\sin \dfrac{{7\pi }}{{14}}\sin \dfrac{{9\pi }}{{14}}\sin \dfrac{{11\pi }}{{14}}\sin \dfrac{{13\pi }}{{14}}
sin7π14\sin \dfrac{{7\pi }}{{14}} is equal to sinπ2\sin \dfrac{\pi }{2} and the value of sinπ2\sin \dfrac{\pi }{2} is 1.
On substituting the above value in the given equation, we get
sinπ14sin3π14sin5π14×(1)×sin9π14sin11π14sin13π14 sinπ14sin3π14sin5π14sin9π14sin11π14sin13π14  \Rightarrow \sin \dfrac{\pi }{{14}}\sin \dfrac{{3\pi }}{{14}}\sin \dfrac{{5\pi }}{{14}} \times \left( 1 \right) \times \sin \dfrac{{9\pi }}{{14}}\sin \dfrac{{11\pi }}{{14}}\sin \dfrac{{13\pi }}{{14}} \\\ \Rightarrow \sin \dfrac{\pi }{{14}}\sin \dfrac{{3\pi }}{{14}}\sin \dfrac{{5\pi }}{{14}}\sin \dfrac{{9\pi }}{{14}}\sin \dfrac{{11\pi }}{{14}}\sin \dfrac{{13\pi }}{{14}} \\\
And we already know that sinθ=cos(π2θ)\sin \theta = \cos \left( {\dfrac{\pi }{2} - \theta } \right)
Therefore, we can write sine functions in terms of cosine functions.
sin3π14=cos(π23π14)=cos2π7 sin5π14=cos(π25π14)=cosπ7 sin9π14=cos(π29π14)=cosπ7=cosπ7  sin11π14=cos(π211π14)=cos2π7=cos2π7 sin13π14=sin(π13π14)=sinπ14   \sin \dfrac{{3\pi }}{{14}} = \cos \left( {\dfrac{\pi }{2} - \dfrac{{3\pi }}{{14}}} \right) = \cos \dfrac{{2\pi }}{7} \\\ \sin \dfrac{{5\pi }}{{14}} = \cos \left( {\dfrac{\pi }{2} - \dfrac{{5\pi }}{{14}}} \right) = \cos \dfrac{\pi }{7} \\\ \sin \dfrac{{9\pi }}{{14}} = \cos \left( {\dfrac{\pi }{2} - \dfrac{{9\pi }}{{14}}} \right) = \cos \dfrac{{ - \pi }}{7} = \cos \dfrac{\pi }{7} \; \sin \dfrac{{11\pi }}{{14}} = \cos \left( {\dfrac{\pi }{2} - \dfrac{{11\pi }}{{14}}} \right) = \cos \dfrac{{ - 2\pi }}{7} = \cos \dfrac{{2\pi }}{7} \\\ \sin \dfrac{{13\pi }}{{14}} = \sin \left( {\pi - \dfrac{{13\pi }}{{14}}} \right) = \sin \dfrac{\pi }{{14}} \;
On substituting the above obtained values in sinπ14sin3π14sin5π14sin9π14sin11π14sin13π14\sin \dfrac{\pi }{{14}}\sin \dfrac{{3\pi }}{{14}}\sin \dfrac{{5\pi }}{{14}}\sin \dfrac{{9\pi }}{{14}}\sin \dfrac{{11\pi }}{{14}}\sin \dfrac{{13\pi }}{{14}} , we get
sinπ14sin3π14sin5π14sin9π14sin11π14sin13π14=sinπ14cos2π7cosπ7cosπ7cos2π7sinπ14 (sinπ14cos2π7cosπ7)2   \Rightarrow \sin \dfrac{\pi }{{14}}\sin \dfrac{{3\pi }}{{14}}\sin \dfrac{{5\pi }}{{14}}\sin \dfrac{{9\pi }}{{14}}\sin \dfrac{{11\pi }}{{14}}\sin \dfrac{{13\pi }}{{14}} = \sin \dfrac{\pi }{{14}}\cos \dfrac{{2\pi }}{7}\cos \dfrac{\pi }{7}\cos \dfrac{\pi }{7}\cos \dfrac{{2\pi }}{7}\sin \dfrac{\pi }{{14}} \\\ \Rightarrow {\left( {\sin \dfrac{\pi }{{14}}\cos \dfrac{{2\pi }}{7}\cos \dfrac{\pi }{7}} \right)^2} \;
To get a form 2sinθcosθ=sin(2θ)2\sin \theta \cos \theta = \sin \left( {2\theta } \right) , we have to multiply and divide with cosθ\cos \theta
So, first multiply and divide with 2cosπ142\cos \dfrac{\pi }{{14}}
(1(2cosπ14)×2cosπ14sinπ14cos2π7cosπ7)2 2sinθcosθ=sin2θ2cosπ14sinπ14=sin(2×π14)=sinπ7 (1(2cosπ14)×sinπ7cos2π7cosπ7)2=(1(2cosπ14)×sinπ7cosπ7cos2π7)2  \Rightarrow {\left( {\dfrac{1}{{\left( {2\cos \dfrac{\pi }{{14}}} \right)}} \times 2\cos \dfrac{\pi }{{14}}\sin \dfrac{\pi }{{14}}\cos \dfrac{{2\pi }}{7}\cos \dfrac{\pi }{7}} \right)^2} \\\ 2\sin \theta \cos \theta = \sin 2\theta\Rightarrow 2\cos \dfrac{\pi }{{14}}\sin \dfrac{\pi }{{14}} = \sin \left( {2 \times \dfrac{\pi }{{14}}} \right) = \sin \dfrac{\pi }{7} \\\ \Rightarrow {\left( {\dfrac{1}{{\left( {2\cos \dfrac{\pi }{{14}}} \right)}} \times \sin \dfrac{\pi }{7}\cos \dfrac{{2\pi }}{7}\cos \dfrac{\pi }{7}} \right)^2} = {\left( {\dfrac{1}{{\left( {2\cos \dfrac{\pi }{{14}}} \right)}} \times \sin \dfrac{\pi }{7}\cos \dfrac{\pi }{7}\cos \dfrac{{2\pi }}{7}} \right)^2} \\\
Multiply and divide with 2.
(1(2×2cosπ14)×2sinπ7cosπ7cos2π7)2 2sinπ7cosπ7=sin(2×π7)=sin2π7 (1(4cosπ14)×sin2π7cos2π7)2  \Rightarrow {\left( {\dfrac{1}{{\left( {2 \times 2\cos \dfrac{\pi }{{14}}} \right)}} \times 2\sin \dfrac{\pi }{7}\cos \dfrac{\pi }{7}\cos \dfrac{{2\pi }}{7}} \right)^2} \\\ 2\sin \dfrac{\pi }{7}\cos \dfrac{\pi }{7} = \sin \left( {2 \times \dfrac{\pi }{7}} \right) = \sin \dfrac{{2\pi }}{7} \\\ \Rightarrow {\left( {\dfrac{1}{{\left( {4\cos \dfrac{\pi }{{14}}} \right)}} \times \sin \dfrac{{2\pi }}{7}\cos \dfrac{{2\pi }}{7}} \right)^2} \\\
Multiply and divide with 2 again.
(1(4×2cosπ14)×2sin2π7cos2π7)2 2sin2π7cos2π7=sin(2×2π7)=sin4π7 (1(8cosπ14)sin4π7)2   \Rightarrow {\left( {\dfrac{1}{{\left( {4 \times 2\cos \dfrac{\pi }{{14}}} \right)}} \times 2\sin \dfrac{{2\pi }}{7}\cos \dfrac{{2\pi }}{7}} \right)^2} \\\ 2\sin \dfrac{{2\pi }}{7}\cos \dfrac{{2\pi }}{7} = \sin \left( {2 \times \dfrac{{2\pi }}{7}} \right) = \sin \dfrac{{4\pi }}{7} \\\ \Rightarrow {\left( {\dfrac{1}{{\left( {8\cos \dfrac{\pi }{{14}}} \right)}}\sin \dfrac{{4\pi }}{7}} \right)^2} \;
sin4π7\sin \dfrac{{4\pi }}{7} can be written as cos(π24π7)=cosπ14=cosπ14\cos \left( {\dfrac{\pi }{2} - \dfrac{{4\pi }}{7}} \right) = \cos \dfrac{{ - \pi }}{{14}} = \cos \dfrac{\pi }{{14}}
Therefore, substituting the obtained value of sin4π7\sin \dfrac{{4\pi }}{7} , we get
(18cos(π14)×cosπ14) (18)2=164   \left( {\dfrac{1}{{8\cos \left( {\dfrac{\pi }{{14}}} \right)}} \times \cos \dfrac{\pi }{{14}}} \right) \\\ \Rightarrow {\left( {\dfrac{1}{8}} \right)^2} = \dfrac{1}{{64}} \;
Therefore, the value of sinπ14sin3π14sin5π14sin7π14sin9π14sin11π14sin13π14\sin \dfrac{\pi }{{14}}\sin \dfrac{{3\pi }}{{14}}\sin \dfrac{{5\pi }}{{14}}\sin \dfrac{{7\pi }}{{14}}\sin \dfrac{{9\pi }}{{14}}\sin \dfrac{{11\pi }}{{14}}\sin \dfrac{{13\pi }}{{14}} is 164\dfrac{1}{{64}}
But the given value is 1m\dfrac{1}{m} . Therefore, on equating both, we get
1m=164 m=64   \dfrac{1}{m} = \dfrac{1}{{64}} \\\ \Rightarrow m = 64 \;
Hence, the value of m obtained is 64.

Note : The values of sine function and cosine function repeat after 360 degrees or 2pi radians whereas the values of tan function repeats after pi radians. Cosine function of negative angle can be written as positive cosine but sine function of negative angle is negative sine. Be careful with this. Do not confuse the formula of sin(2θ)\sin \left( {2\theta } \right) with the formula of cos(2θ)\cos \left( {2\theta } \right) , which is cos2θsin2θ{\cos ^2}\theta - {\sin ^2}\theta .