Question
Question: Find the value of \( m \) if \( \sin \dfrac{\pi }{{14}}\sin \dfrac{{3\pi }}{{14}}\sin \dfrac{{5\pi }...
Find the value of m if sin14πsin143πsin145πsin147πsin149πsin1411πsin1413π=m1 find m .
Solution
Hint : Let us say there is an angle A. Then sine of angle A will be cosine of (90∘−A) . 90 degrees can also be written as 2π radians. Use this info and below mentioned formulas to find the value of LHS of the given trigonometric equation. And then equate the obtained value with RHS to find the value of m.
Formulas used:
- sinθ=cos(2π−θ)
- sin(π−θ)=sinθ
- cos(−θ)=cosθ
- 2sinθcosθ=sin(2θ)
Complete step-by-step answer :
The given trigonometric equation is sin14πsin143πsin145πsin147πsin149πsin1411πsin1413π=m1
Considering the LHS:
sin14πsin143πsin145πsin147πsin149πsin1411πsin1413π
sin147π is equal to sin2π and the value of sin2π is 1.
On substituting the above value in the given equation, we get
⇒sin14πsin143πsin145π×(1)×sin149πsin1411πsin1413π ⇒sin14πsin143πsin145πsin149πsin1411πsin1413π
And we already know that sinθ=cos(2π−θ)
Therefore, we can write sine functions in terms of cosine functions.
sin143π=cos(2π−143π)=cos72π sin145π=cos(2π−145π)=cos7π sin149π=cos(2π−149π)=cos7−π=cos7πsin1411π=cos(2π−1411π)=cos7−2π=cos72π sin1413π=sin(π−1413π)=sin14π
On substituting the above obtained values in sin14πsin143πsin145πsin149πsin1411πsin1413π , we get
⇒sin14πsin143πsin145πsin149πsin1411πsin1413π=sin14πcos72πcos7πcos7πcos72πsin14π ⇒(sin14πcos72πcos7π)2
To get a form 2sinθcosθ=sin(2θ) , we have to multiply and divide with cosθ
So, first multiply and divide with 2cos14π
⇒(2cos14π)1×2cos14πsin14πcos72πcos7π2 2sinθcosθ=sin2θ⇒2cos14πsin14π=sin(2×14π)=sin7π ⇒(2cos14π)1×sin7πcos72πcos7π2=(2cos14π)1×sin7πcos7πcos72π2
Multiply and divide with 2.
⇒(2×2cos14π)1×2sin7πcos7πcos72π2 2sin7πcos7π=sin(2×7π)=sin72π ⇒(4cos14π)1×sin72πcos72π2
Multiply and divide with 2 again.
⇒(4×2cos14π)1×2sin72πcos72π2 2sin72πcos72π=sin(2×72π)=sin74π ⇒(8cos14π)1sin74π2
sin74π can be written as cos(2π−74π)=cos14−π=cos14π
Therefore, substituting the obtained value of sin74π , we get
8cos(14π)1×cos14π ⇒(81)2=641
Therefore, the value of sin14πsin143πsin145πsin147πsin149πsin1411πsin1413π is 641
But the given value is m1 . Therefore, on equating both, we get
m1=641 ⇒m=64
Hence, the value of m obtained is 64.
Note : The values of sine function and cosine function repeat after 360 degrees or 2pi radians whereas the values of tan function repeats after pi radians. Cosine function of negative angle can be written as positive cosine but sine function of negative angle is negative sine. Be careful with this. Do not confuse the formula of sin(2θ) with the formula of cos(2θ) , which is cos2θ−sin2θ .