Solveeit Logo

Question

Question: Find the value of m for which \({{\rm{z}}^3} + \left( {3 + {\rm{i}}} \right){{\rm{z}}^2} - 3{\rm{z}}...

Find the value of m for which z3+(3+i)z23z(m+i)=0{{\rm{z}}^3} + \left( {3 + {\rm{i}}} \right){{\rm{z}}^2} - 3{\rm{z}} - \left( {{\rm{m}} + {\rm{i}}} \right) = 0 where mR{\rm{m}} \in {\rm{R}} has at least one real root.
A) 1
B) 2
C) 3
D) 5

Explanation

Solution

We suppose let a be real root then replace z with a, then take conjugate of the equation in terms of a. Solve both equations to find a and by using value of a, find m.

Complete step by step solution:
z3+(3+i)z23z(m+i)=0{{\rm{z}}^3} + \left( {3 + {\rm{i}}} \right){{\rm{z}}^2} - 3{\rm{z}} - \left( {{\rm{m}} + {\rm{i}}} \right) = 0---------(1)
Let ‘a’ be the real root.
z=a\Rightarrow {\rm{z}} = {\rm{a}}
a3+(3+i)a23a(m+i)=0{{\rm{a}}^3} + \left( {3 + {\rm{i}}} \right){{\rm{a}}^2} - 3{\rm{a}} - \left( {{\rm{m}} + {\rm{i}}} \right) = 0---------(2)
(since, a is the root of the equation 1)
Conjugating eq (2) we get.
aˉ3+(3i)aˉ23aˉ(mi)=0{{\rm{\bar a}}^3} + \left( {3 - {\rm{i}}} \right){{\rm{\bar a}}^2} - 3{\rm{\bar a}} - \left( {{\rm{m}} - {\rm{i}}} \right) = 0
a3+(3i)a23a(mi)=0\Rightarrow {{\rm{a}}^3} + \left( {3 - {\rm{i}}} \right){{\rm{a}}^2} - 3{\rm{a}} - \left( {{\rm{m}} - {\rm{i}}} \right) = 0----------(3)
Subtracting eq (2) and eq .3 we get
a2(2i)=2i{{\rm{a}}^2}\left( {2{\rm{i}}} \right) = 2{\rm{i}}
a=±1{\rm{a}} = \pm 1 (4)
Multiplying eq 2 by (3 - i) and eq 3 by (3 + i) and then subtracting we get
(a33a)(3i3i)=(3i)(m+i)(3+i)(mi)\left( {{{\rm{a}}^3} - 3{\rm{a}}} \right)\left( {3 - {\rm{i}} - 3 - {\rm{i}}} \right) = \left( {3 - {\rm{i}}} \right)\left( {{\rm{m}} + {\rm{i}}} \right) - \left( {3 + {\rm{i}}} \right)\left( {{\rm{m}} - {\rm{i}}} \right)
a33a=m3\Rightarrow {{\rm{a}}^3} - 3{\rm{a}} = {\rm{m}} - 3
13=m3\Rightarrow 1 - 3 = {\rm{m}} - 3 (when a =1)
m=1\Rightarrow {\rm{m}} = 1
1+3=m3\Rightarrow - 1 + 3 = {\rm{m}} - 3 (when a = -1)
m=5\Rightarrow {\rm{m}} = 5
So, m = 1, 5

So, from above option both A and D is correct.

Note:
Don’t miss any equation which we have taken. To remove i multiply the equation in terms of a with (3 - i) and its conjugate equation with (3 + i). then subtract both equations. Find all the value of m by putting a = 1 and a = -1.