Solveeit Logo

Question

Question: Find the value of \(M=\cot {{16}^{o}}\cot {{44}^{o}}+\cot {{44}^{o}}\cot {{76}^{o}}-\cot {{76}^{o}}\...

Find the value of M=cot16ocot44o+cot44ocot76ocot76ocot16oM=\cot {{16}^{o}}\cot {{44}^{o}}+\cot {{44}^{o}}\cot {{76}^{o}}-\cot {{76}^{o}}\cot {{16}^{o}}.

Explanation

Solution

Hint: Observe the relation between the angles of the terms of the given expression. Use trigonometric identities of cot(A+B)=cotAcotB1cotB+cotA\cot \left( A+B \right)=\dfrac{\cot A\cot B-1}{\cot B+\cot A} and cot(AB)=cotAcotB+1cotBcotA\cot \left( A-B \right)=\dfrac{\cot A\cot B+1}{\cot B-\cot A} to solve it further.

Complete step-by-step answer:
The given expression is cot16ocot44o+cot44ocot76ocot76ocot16o=?\cot {{16}^{o}}\cot {{44}^{o}}+\cot {{44}^{o}}\cot {{76}^{o}}-\cot {{76}^{o}}\cot {{16}^{o}}=?
Let us suppose the value of given expression be M. Hence, we can write
M=cot16ocot44o+cot44ocot76ocot76ocot16oM=\cot {{16}^{o}}\cot {{44}^{o}}+\cot {{44}^{o}}\cot {{76}^{o}}-\cot {{76}^{o}}\cot {{16}^{o}} ………………… (i)
We know the identities of cot(A+B)\cot \left( A+B \right) and cot(AB)\cot \left( A-B \right) can be given as
cot(A+B)=cotAcotB1cotB+cotA\cot \left( A+B \right)=\dfrac{\cot A\cot B-1}{\operatorname{cotB}+cotA} ………………… (ii)
cot(AB)=cotAcotB+1cotBcotA\cot \left( A-B \right)=\dfrac{\cot A\cot B+1}{\cot B-\cot A}…………………(iii)
Now, we can observe the equation (i) and get that the sum of angles of first two expressions are 60o{{60}^{o}} and 120o{{120}^{o}} respectively and difference of angles of last expression (cot760cot16o)\left( \cot {{76}^{0}}\cot {{16}^{o}} \right) is 60o{{60}^{o}}.
Hence, we can get value of cot16ocot44ocot {{16}^{o}}cot {{44}^{o}} from equation (ii) by substituting A=16oA={{16}^{o}} and B=44oB={{44}^{o}}. Hence, we get
cot(44o+16o)=cot44ocot16o1cot44o+cot16o cot60o=cot44ocot16o1cot44o+cot16o \begin{aligned} & \cot \left( {{44}^{o}}+{{16}^{o}} \right)=\dfrac{\cot {{44}^{o}}\cot {{16}^{o}}-1}{\cot {{44}^{o}}+\cot {{16}^{o}}} \\\ & \cot {{60}^{o}}=\dfrac{\cot {{44}^{o}}\cot {{16}^{o}}-1}{\cot {{44}^{o}}+\cot {{16}^{o}}} \\\ \end{aligned}
Now, putting value of cot60o\cot {{60}^{o}} as 13\dfrac{1}{\sqrt{3}} and then cross multiplying the above equation, we get
13(cot44o+cot16o)=cot44ocot16o1 cot44ocot16o=1+13(cot44o+cot16o)............(iv) \begin{aligned} & \dfrac{1}{\sqrt{3}}\left( \cot {{44}^{o}}+\cot {{16}^{o}} \right)=\cot {{44}^{o}}\cot {{16}^{o}}-1 \\\ & \Rightarrow \cot {{44}^{o}}\cot {{16}^{o}}=1+\dfrac{1}{\sqrt{3}}\left( \cot {{44}^{o}}+\cot {{16}^{o}} \right)............(iv) \\\ \end{aligned}
Similarly put A=44oA={{44}^{o}} and B=76oB={{76}^{o}} in equation (ii) to get value of cot44ocot76o\cot {{44}^{o}}\cot {{76}^{o}}. So, we get
cot(44o+76o)=cot44ocot76o1cot44o+cot76o cot120o=cot44ocot76o1cot44o+cot76o \begin{aligned} & \cot \left( {{44}^{o}}+{{76}^{o}} \right)=\dfrac{\cot {{44}^{o}}\cot {{76}^{o}}-1}{\cot {{44}^{o}}+\cot {{76}^{o}}} \\\ & \cot {{120}^{o}}=\dfrac{\cot {{44}^{o}}\cot {{76}^{o}}-1}{\cot {{44}^{o}}+\cot {{76}^{o}}} \\\ \end{aligned}
Now, we can use the identity cot(180θ)=cotθ\cot \left( 180-\theta \right)=-\cot \theta with cot120o\cot {{120}^{o}}. Hence, we get
cot(180o60o)=cot44ocot76o1cot44o+cot76o cot60o=cot44ocot76o1cot44o+cot76o \begin{aligned} & \cot \left( {{180}^{o}}-{{60}^{o}} \right)=\dfrac{\cot {{44}^{o}}\cot {{76}^{o}}-1}{\cot {{44}^{o}}+\cot {{76}^{o}}} \\\ & -\cot {{60}^{o}}=\dfrac{\cot {{44}^{o}}\cot {{76}^{o}}-1}{\cot {{44}^{o}}+\cot {{76}^{o}}} \\\ \end{aligned}
Now, put the value of cot60o\cot {{60}^{o}}as 13\dfrac{1}{\sqrt{3}}and cross-multiply the equation. Hence, we get
13(cot44o+cot76o)=cot44ocot76o1 cot44ocot76o=13(cot44o+cot76o)+1...........(v) \begin{aligned} & -\dfrac{1}{\sqrt{3}}\left( \cot {{44}^{o}}+\cot {{76}^{o}} \right)=\cot {{44}^{o}}\cot {{76}^{o}}-1 \\\ & \Rightarrow \cot {{44}^{o}}\cot {{76}^{o}}=\dfrac{-1}{\sqrt{3}}\left( \cot {{44}^{o}}+\cot {{76}^{o}} \right)+1...........(v) \\\ \end{aligned}
And now, put A=76oA={{76}^{o}} and B=160B={{16}^{0}}in the equation (iii) to get the value of cot76ocot16o\cot {{76}^{o}}\cot {{16}^{o}}. Hence, we get
cot(76o16o)=cot76ocot16o+1cot16ocot76o cot60o=cot76ocot16o+1cot16ocot76o \begin{aligned} & \cot \left( {{76}^{o}}-{{16}^{o}} \right)=\dfrac{\cot {{76}^{o}}\cot {{16}^{o}}+1}{\cot {{16}^{o}}-\cot {{76}^{o}}} \\\ & \cot {{60}^{o}}=\dfrac{\cot {{76}^{o}}\cot {{16}^{o}}+1}{\cot {{16}^{o}}-\cot {{76}^{o}}} \\\ \end{aligned}
Now, put value of cot60o\cot {{60}^{o}} and cross-multiply the above equation, hence, we get
13(cot16ocot76o)=cot76cot16o+1 cot76ocot16o=13(cot16ocot76o)1............(vi) \begin{aligned} & \dfrac{1}{\sqrt{3}}\left( \cot {{16}^{o}}-\cot {{76}^{o}} \right)=\cot 76\cot {{16}^{o}}+1 \\\ & \Rightarrow \cot {{76}^{o}}\cot {{16}^{o}}=\dfrac{1}{\sqrt{3}}\left( \cot {{16}^{o}}-\cot {{76}^{o}} \right)-1............(vi) \\\ \end{aligned}
Now, put the values of cot44ocot16o,cot44ocot76o\cot {{44}^{o}}\cot {{16}^{o}},\cot {{44}^{o}}\cot {{76}^{o}} and cot76ocot16o\cot {{76}^{o}}\cot {{16}^{o}}from the equation (iv), (v), (vi) respectively in the equation (i). hence, we get
M=1+13(cot44o+cot16o)13(cot44o+cot76o)+1(13(cot16ocot76o)1) M=1+13cot44o+13cot16o13cot44o13cot76o+113cot16o+13cot76o+1 \begin{aligned} & M=1+\dfrac{1}{\sqrt{3}}\left( \cot {{44}^{o}}+\cot {{16}^{o}} \right)-\dfrac{1}{\sqrt{3}}\left( \cot {{44}^{o}}+\cot {{76}^{o}} \right)+1-\left( \dfrac{1}{\sqrt{3}}\left( \cot {{16}^{o}}-\cot {{76}^{o}} \right)-1 \right) \\\ & M=1+\dfrac{1}{\sqrt{3}}\cot {{44}^{o}}+\dfrac{1}{\sqrt{3}}\cot {{16}^{o}}-\dfrac{1}{\sqrt{3}}\cot {{44}^{o}}-\dfrac{1}{\sqrt{3}}\cot {{76}^{o}}+1-\dfrac{1}{\sqrt{3}}\cot {{16}^{o}}+\dfrac{1}{\sqrt{3}}\cot {{76}^{o}}+1 \\\ \end{aligned}
Cancelling the like terms, we get
M = 1+1+1
So, value of cot16ocot44o+cot44ocot76ocot76ocot16o\cot {{16}^{o}}\cot {{44}^{o}}+\cot {{44}^{o}}\cot {{76}^{o}}-\cot {{76}^{o}}\cot {{16}^{o}} is 3.

Note: One may think why we did not calculate the value of all the terms in M with a single identity of cot(AB)\cot \left( A-B \right) or cot(A+B)\cot \left( A+B \right). We need to observe that, we know the value of cot60o\cot {{60}^{o}}or cot120o\cot {{120}^{o}}.
That’s why we split the terms with the required identities.
Another approach for the given question would be that we can put cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta } and get expression as
cos16ocos44osin16osin44o+cos44ocos76osin44osin760cos76ocos16osin76osin16o =cos16ocos44osin76o+cos44ocos76osin16o+cos76ocos16osin44osin16osin44osin76o \begin{aligned} & \dfrac{\cos {{16}^{o}}\cos {{44}^{o}}}{\sin {{16}^{o}}\sin {{44}^{o}}}+\dfrac{\cos {{44}^{o}}\cos {{76}^{o}}}{\sin {{44}^{o}}\sin {{76}^{0}}}-\dfrac{\cos {{76}^{o}}\cos {{16}^{o}}}{\sin {{76}^{o}}\sin {{16}^{o}}} \\\ & =\dfrac{\cos {{16}^{o}}\cos {{44}^{o}}\sin {{76}^{o}}+\cos {{44}^{o}}\cos {{76}^{o}}\sin {{16}^{o}}+\cos {{76}^{o}}\cos {{16}^{o}}\sin {{44}^{o}}}{\sin {{16}^{o}}\sin {{44}^{o}}\sin {{76}^{o}}} \\\ \end{aligned}
Now multiply by 2 in numerator and denominator and use formula of, 2cosAcosB2\cos A\cos B, in numerator and simplify the denominator by identity
sinxsin(60ox)sin(60o+x)=14sin3x\sin x\sin \left( {{60}^{o}}-x \right)\sin \left( {{60}^{o}}+x \right)=\dfrac{1}{4}\sin 3x
Where put x=16ox={{16}^{o}}, you will get the denominator.
Simplify now to get an answer.