Solveeit Logo

Question

Question: Find the value of \(\left( {{{\log }_3}12} \right)\left( {{{\log }_3}72} \right) - {\log _3}\left( {...

Find the value of (log312)(log372)log3(192)log36\left( {{{\log }_3}12} \right)\left( {{{\log }_3}72} \right) - {\log _3}\left( {192} \right){\log _3}6

Explanation

Solution

First reduce all the numbers in logarithm in 2’s and 3’s by factorization. Then apply the logarithm properties logm×n=logm+lognlogmn=nlogm and logmm=1\log m \times n = \log m + \log n{\text{, }}\log {m^n} = n\log m{\text{ and }}{\log _m}m = 1 to convert the entire expression in log32{\log _3}2. Simplify the algebraic expression further to get the final answer.

Complete step-by-step answer:
According to the question, the given logarithmic expression is (log312)(log372)log3(192)log36\left( {{{\log }_3}12} \right)\left( {{{\log }_3}72} \right) - {\log _3}\left( {192} \right){\log _3}6. Let its value is kk. Then we have:
k=(log312)(log372)log3(192)log36\Rightarrow k = \left( {{{\log }_3}12} \right)\left( {{{\log }_3}72} \right) - {\log _3}\left( {192} \right){\log _3}6
Factoring all the numbers in logarithms, we’ll get:
k=(log34×3)(log38×9)log3(64×3)log32×3\Rightarrow k = \left( {{{\log }_3}4 \times 3} \right)\left( {{{\log }_3}8 \times 9} \right) - {\log _3}\left( {64 \times 3} \right){\log _3}2 \times 3
We know that 4=22, 8=2364=26 and 9=324 = {2^2},{\text{ }}8 = {2^3}{\text{, }}64 = {2^6}{\text{ and }}9 = {3^2}. Substituting these values above, we’ll get:
k=(log322×3)(log323×32)log3(26×3)log32×3\Rightarrow k = \left( {{{\log }_3}{2^2} \times 3} \right)\left( {{{\log }_3}{2^3} \times {3^2}} \right) - {\log _3}\left( {{2^6} \times 3} \right){\log _3}2 \times 3
Now, we also know that according to the property of logarithm, we have:
logm×n=logm+logn\Rightarrow \log m \times n = \log m + \log n
Using this property for the above expression, we’ll get:
k=(log322+log33)(log323+log332)(log326+log33)(log32+log33)\Rightarrow k = \left( {{{\log }_3}{2^2} + {{\log }_3}3} \right)\left( {{{\log }_3}{2^3} + {{\log }_3}{3^2}} \right) - \left( {{{\log }_3}{2^6} + {{\log }_3}3} \right)\left( {{{\log }_3}2 + {{\log }_3}3} \right)
We have another property of logarithm which is given as:
logmn=nlogm\Rightarrow \log {m^n} = n\log m
Using this property for the logarithmic expression, we’ll get:
k=(2log32+log33)(3log32+2log33)(6log32+log33)(log32+log33)\Rightarrow k = \left( {2{{\log }_3}2 + {{\log }_3}3} \right)\left( {3{{\log }_3}2 + 2{{\log }_3}3} \right) - \left( {6{{\log }_3}2 + {{\log }_3}3} \right)\left( {{{\log }_3}2 + {{\log }_3}3} \right)
Again we will use the property:
logmm=1\Rightarrow {\log _m}m = 1
On using this, we will have:
k=(2log32+1)(3log32+2)(6log32+1)(log32+1)\Rightarrow k = \left( {2{{\log }_3}2 + 1} \right)\left( {3{{\log }_3}2 + 2} \right) - \left( {6{{\log }_3}2 + 1} \right)\left( {{{\log }_3}2 + 1} \right)
Now, to make the simplification easier, put log32=x{\log _3}2 = x. From this we’ll get:
k=(2x+1)(3x+2)(6x+1)(x+1)\Rightarrow k = \left( {2x + 1} \right)\left( {3x + 2} \right) - \left( {6x + 1} \right)\left( {x + 1} \right)
Multiplying the terms and simplifying it further, we’ll get:
k=2x(3x+2)+1(3x+2)[6x(x+1)+1(x+1)] k=6x2+4x+3x+2(6x2+6x+x+1) k=6x2+7x+26x27x1 \Rightarrow k = 2x\left( {3x + 2} \right) + 1\left( {3x + 2} \right) - \left[ {6x\left( {x + 1} \right) + 1\left( {x + 1} \right)} \right] \\\ \Rightarrow k = 6{x^2} + 4x + 3x + 2 - \left( {6{x^2} + 6x + x + 1} \right) \\\ \Rightarrow k = 6{x^2} + 7x + 2 - 6{x^2} - 7x - 1
Here, 6x26{x^2} will cancel out with 6x2 - 6{x^2} and 7x7x will cancel out with 7x - 7x So the final value is:
k=21=1\Rightarrow k = 2 - 1 = 1

Therefore the value of (log312)(log372)log3(192)log36\left( {{{\log }_3}12} \right)\left( {{{\log }_3}72} \right) - {\log _3}\left( {192} \right){\log _3}6 is 11.

Note: Here is the summary of all the logarithmic properties used above:
logmm=1 logmn=nlogm logm×n=logm+logn \Rightarrow {\log _m}m = 1 \\\ \Rightarrow \log {m^n} = n\log m \\\ \Rightarrow \log m \times n = \log m + \log n
Some other important logarithmic properties are:
logmn=logmlogn logab=logeblogea logab=1logba logabm=1blogam \Rightarrow \log \dfrac{m}{n} = \log m - \log n \\\ \Rightarrow {\log _a}b = \dfrac{{{{\log }_e}b}}{{{{\log }_e}a}} \\\ \Rightarrow {\log _a}b = \dfrac{1}{{{{\log }_b}a}} \\\ \Rightarrow {\log _{{a^b}}}m = \dfrac{1}{b}{\log _a}m