Solveeit Logo

Question

Question: Find the value of \[\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \righ...

Find the value of (1+tanθ+secθ)(1+cotθcscθ)\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)
(a) 00
(b) 11
(c) 22
(d) None of these

Explanation

Solution

Hint: Use the properties of trigonometric functions and simplify the terms given in the bracket by multiplying each one of them and cancelling out the like terms with opposite signs.

We have to find the value of (1+tanθ+secθ)(1+cotθcscθ)\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right). We will begin by simplifying the given expression by multiplying each of the terms in the two brackets.
Thus, we have (1+tanθ+secθ)(1+cotθcscθ)=1(1+cotθcscθ)+tanθ(1+cotθcscθ)+secθ(1+cotθcscθ)\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)=1\left( 1+\cot \theta -\csc \theta \right)+\tan \theta \left( 1+\cot \theta -\csc \theta \right)+\sec \theta \left( 1+\cot \theta -\csc \theta \right)
Further simplifying the equation, we get (1+tanθ+secθ)(1+cotθcscθ)=1+cotθcscθ+tanθcotθ+tanθtanθcscθ+secθ+secθcotθsecθcscθ\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)=1+\cot \theta -\csc \theta +\tan \theta \cot \theta +\tan \theta -\tan \theta \csc \theta +\sec \theta +\sec \theta \cot \theta -\sec \theta \csc \theta
We know that tanθcotθ=1\tan \theta \cot \theta =1 and secθ=1cosθ,cscθ=1sinθ\sec \theta =\dfrac{1}{\cos \theta },\csc \theta =\dfrac{1}{\sin \theta }.
Thus, we have tanθcscθ=tanθ1sinθ=1cosθ\tan \theta \csc \theta =\tan \theta \dfrac{1}{\sin \theta }=\dfrac{1}{\cos \theta }.
Also, we have secθcotθ=cotθ1cosθ=1sinθ\sec \theta \cot \theta =\cot \theta \dfrac{1}{\cos \theta }=\dfrac{1}{\sin \theta }.
Similarly, we get secθcscθ=1sinθ×1cosθ=1sinθcosθ\sec \theta \csc \theta =\dfrac{1}{\sin \theta }\times \dfrac{1}{\cos \theta }=\dfrac{1}{\sin \theta \cos \theta }.
Substituting all the above equations in the expansion of the given expression, we have (1+tanθ+secθ)(1+cotθcscθ)=1+cotθ1sinθ+1+tanθ1cosθ+1cosθ+1sinθ1sinθcosθ\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)=1+\cot \theta -\dfrac{1}{\sin \theta }+1+\tan \theta -\dfrac{1}{\cos \theta }+\dfrac{1}{\cos \theta }+\dfrac{1}{\sin \theta }-\dfrac{1}{\sin \theta \cos \theta }
Thus, we have (1+tanθ+secθ)(1+cotθcscθ)=2+cotθ+tanθ1sinθcosθ\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)=2+\cot \theta +\tan \theta -\dfrac{1}{\sin \theta \cos \theta }.
We know that tanθ=sinθcosθ,cotθ=cosθsinθ\tan \theta =\dfrac{\sin \theta }{\cos \theta },\cot \theta =\dfrac{\cos \theta }{\sin \theta }.
Thus, we have (1+tanθ+secθ)(1+cotθcscθ)=2+cotθ+tanθ1sinθcosθ=2+sinθcosθ+cosθsinθ1sinθcosθ\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)=2+\cot \theta +\tan \theta -\dfrac{1}{\sin \theta \cos \theta }=2+\dfrac{\sin \theta }{\cos \theta }+\dfrac{\cos \theta }{\sin \theta }-\dfrac{1}{\sin \theta \cos \theta }
Further simplifying the expression, we get (1+tanθ+secθ)(1+cotθcscθ)=2+sin2θ+cos2θsinθcosθ1sinθcosθ\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)=2+\dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{\sin \theta \cos \theta }-\dfrac{1}{\sin \theta \cos \theta }.
We know the identity sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1.
Thus, we have (1+tanθ+secθ)(1+cotθcscθ)=2+1sinθcosθ1sinθcosθ\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)=2+\dfrac{1}{\sin \theta \cos \theta }-\dfrac{1}{\sin \theta \cos \theta }.
So, we get (1+tanθ+secθ)(1+cotθcscθ)=2\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)=2.
Hence, the value of the expression (1+tanθ+secθ)(1+cotθcscθ)\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right) is 22, which is option (c).

Note: Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 11). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.