Solveeit Logo

Question

Question: Find the value of \({{\left( 1+i \right)}^{10}}\) , where \({{i}^{2}}=-1\) , is equal to: a). 32 i...

Find the value of (1+i)10{{\left( 1+i \right)}^{10}} , where i2=1{{i}^{2}}=-1 , is equal to:
a). 32 i
b). 64+i
c). 24i-32
d). None of these

Explanation

Solution

Hint: In this problem, we will use a formula in complex numbers which converts complex numbers of type a+bia+bi to the form reiθr{{e}^{i\theta }} .once we do this we will apply the law of indices which says (am)n=amn{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}} and we will get the final answer.

Complete step-by-step solution -
Now the formula we are going to use is, a+bi=(a2+b2)eiθa+bi=\left( \sqrt{{{a}^{2}}+{{b}^{2}}} \right){{e}^{i\theta }} , where,
(i) θ=tan1(ba)\theta ={{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right) , if (a,b)I\left( a,b \right)\in I quadrant.
(ii) θ=πtan1(ba)\theta =\pi -{{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right) , if (a,b)II\left( a,b \right)\in II quadrant.
(iii) θ=π+tan1(ba)\theta =\pi +{{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right) , if (a,b)III\left( a,b \right)\in III quadrant.
(iv) θ=tan1(ba)\theta =-{{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right) , if (a,b)IV\left( a,b \right)\in IV quadrant.
Given a complex number is 1+i.
Comparing with a+bia+bi, we get a=1 and b=1
(a,b) that is (1,1) belongs to I quadrant\therefore \left( a,b \right)\text{ that is }\left( 1,1 \right)\text{ belongs to I quadrant} .
Therefore, the formula is
a+bi=(a2+b2)eiθa+bi=\left( \sqrt{{{a}^{2}}+{{b}^{2}}} \right){{e}^{i\theta }} , where θ=tan1(ba)\theta ={{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right) .
Thus applying the formula, we get,
1+i=(12+12)eiθ1+i=\left( \sqrt{{{1}^{2}}+{{1}^{2}}} \right){{e}^{i\theta }} , where θ=tan1(11)\theta ={{\tan }^{-1}}\left( \left| \dfrac{1}{1} \right| \right) .
1+i=(1+1)eiθ\Rightarrow 1+i=\left( \sqrt{1+1} \right){{e}^{i\theta }} , where θ=tan1(1)\theta ={{\tan }^{-1}}\left( 1 \right) .
1+i=2eiπ4\Rightarrow 1+i=\sqrt{2}{{e}^{\dfrac{i\pi }{4}}} , Since θ=π4\theta =\dfrac{\pi }{4} ……………….. (i)
Now, we need to calculate the value of (1+i)10{{\left( 1+i \right)}^{10}} .
Thus, from (i) we know that 1+i=2eiπ41+i=\sqrt{2}{{e}^{\dfrac{i\pi }{4}}} .
Therefore,
(1+i)10=(2eiπ4)10 (1+i)10=(2)10(eiπ4)10 (1+i)10=(212)10(eiπ4)10 \begin{aligned} & {{\left( 1+i \right)}^{10}}={{\left( \sqrt{2}{{e}^{\dfrac{i\pi }{4}}} \right)}^{10}} \\\ & \Rightarrow {{\left( 1+i \right)}^{10}}={{\left( \sqrt{2} \right)}^{10}}{{\left( {{e}^{\dfrac{i\pi }{4}}} \right)}^{10}} \\\ & \Rightarrow {{\left( 1+i \right)}^{10}}={{\left( {{2}^{\dfrac{1}{2}}} \right)}^{10}}{{\left( {{e}^{\dfrac{i\pi }{4}}} \right)}^{10}} \\\ \end{aligned}
Applying (am)n=amn{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}} , we get
(1+i)10=(212×10)(eiπ4×10){{\left( 1+i \right)}^{10}}=\left( {{2}^{\dfrac{1}{2}\times 10}} \right)\left( {{e}^{\dfrac{i\pi }{4}\times 10}} \right)
Which is
(1+i)10=(25)(e5πi2){{\left( 1+i \right)}^{10}}=\left( {{2}^{5}} \right)\left( {{e}^{\dfrac{5\pi i}{2}}} \right)
(1+i)10=(32)(e5πi2)\Rightarrow {{\left( 1+i \right)}^{10}}=\left( 32 \right)\left( {{e}^{\dfrac{5\pi i}{2}}} \right) ………….. (ii)
Now we know the Euler’s formula,
eiθ=cosθ+isinθ{{e}^{i\theta }}=\cos \theta +i\sin \theta .
Puttingθ=(5π2)\theta =\left( \dfrac{5\pi }{2} \right) , we get,
ei(5π2)=cos(5π2)+isin(5π2){{e}^{i\left( \dfrac{5\pi }{2} \right)}}=\cos \left( \dfrac{5\pi }{2} \right)+i\sin \left( \dfrac{5\pi }{2} \right)
ei(5π2)=0+i(1){{e}^{i\left( \dfrac{5\pi }{2} \right)}}=0+i\left( 1 \right) ……. Since odd multiples of (π2)\left( \dfrac{\pi }{2} \right) give 0 in cos functions and sin(5π2)=sin(π2)\sin \left( \dfrac{5\pi }{2} \right)=\sin \left( \dfrac{\pi }{2} \right) which is 1.
Therefore, e5πi2=i{{e}^{\dfrac{5\pi i}{2}}}=i ……………….. (iii)
Substituting (iii) in (ii) we get
(1+i)10=(32)(i){{\left( 1+i \right)}^{10}}=\left( 32 \right)\left( i \right)
(1+i)10=32i\Rightarrow {{\left( 1+i \right)}^{10}}=32i
Thus option (a) is correct.

Note: This problem can also be solved using binomial theorem which is
(a+b)n=nC0anb0+nC1an1b1+nC2an2b2+............+nC0a0bn{{\left( a+b \right)}^{n}}=n{{C}_{0}}{{a}^{n}}{{b}^{0}}+n{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+n{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+............+n{{C}_{0}}{{a}^{0}}{{b}^{n}}
Putting a=1, b=I and n=10, we get,
(1+i)10=10C0(1)10(i)0+10C1(1)101(i)1+10C2(1)102(i)2+............+10C10(1)0(i)10{{\left( 1+i \right)}^{10}}=10{{C}_{0}}{{\left( 1 \right)}^{10}}{{\left( i \right)}^{0}}+10{{C}_{1}}{{\left( 1 \right)}^{10-1}}{{\left( i \right)}^{1}}+10{{C}_{2}}{{\left( 1 \right)}^{10-2}}{{\left( i \right)}^{2}}+............+10{{C}_{10}}{{\left( 1 \right)}^{0}}{{\left( i \right)}^{10}}
(1+i)10=(1)(1)(1)+(10)(1)(i)+(45)(1)(i2)+........+(1)(1)(i10) (1+i)10=1+10i+45i2+120i3+210i4+252i5+210i6+120i7+45i8+10i9+i10 \begin{aligned} & \Rightarrow {{\left( 1+i \right)}^{10}}=\left( 1 \right)\left( 1 \right)\left( 1 \right)+\left( 10 \right)\left( 1 \right)\left( i \right)+\left( 45 \right)\left( 1 \right)\left( {{i}^{2}} \right)+........+\left( 1 \right)\left( 1 \right)\left( {{i}^{10}} \right) \\\ & \Rightarrow {{\left( 1+i \right)}^{10}}=1+10i+45{{i}^{2}}+120{{i}^{3}}+210{{i}^{4}}+252{{i}^{5}}+210{{i}^{6}}+120{{i}^{7}}+45{{i}^{8}}+10{{i}^{9}}+{{i}^{10}} \\\ \end{aligned}
Now given i2=1{{i}^{2}}=-1
Therefore, i3=i,i4=1,i5=i,i6=1{{i}^{3}}=-i,{{i}^{4}}=1,{{i}^{5}}=i,{{i}^{6}}=-1 and so on.
Therefore, (1+i)10=1+10i45+120(i)+210+252i210120i+45+10i1 (1+i)10=0+32i (1+i)10=32i \begin{aligned} & {{\left( 1+i \right)}^{10}}=1+10i-45+120\left( -i \right)+210+252i-210-120i+45+10i-1 \\\ & \Rightarrow {{\left( 1+i \right)}^{10}}=0+32i \\\ & \Rightarrow {{\left( 1+i \right)}^{10}}=32i \\\ \end{aligned}