Question
Question: Find the value of \({{\left( 1+i \right)}^{10}}\) , where \({{i}^{2}}=-1\) , is equal to: a). 32 i...
Find the value of (1+i)10 , where i2=−1 , is equal to:
a). 32 i
b). 64+i
c). 24i-32
d). None of these
Solution
Hint: In this problem, we will use a formula in complex numbers which converts complex numbers of type a+bi to the form reiθ .once we do this we will apply the law of indices which says (am)n=amn and we will get the final answer.
Complete step-by-step solution -
Now the formula we are going to use is, a+bi=(a2+b2)eiθ , where,
(i) θ=tan−1(ab) , if (a,b)∈I quadrant.
(ii) θ=π−tan−1(ab) , if (a,b)∈II quadrant.
(iii) θ=π+tan−1(ab) , if (a,b)∈III quadrant.
(iv) θ=−tan−1(ab) , if (a,b)∈IV quadrant.
Given a complex number is 1+i.
Comparing with a+bi, we get a=1 and b=1
∴(a,b) that is (1,1) belongs to I quadrant .
Therefore, the formula is
a+bi=(a2+b2)eiθ , where θ=tan−1(ab) .
Thus applying the formula, we get,
1+i=(12+12)eiθ , where θ=tan−1(11) .
⇒1+i=(1+1)eiθ , where θ=tan−1(1) .
⇒1+i=2e4iπ , Since θ=4π ……………….. (i)
Now, we need to calculate the value of (1+i)10 .
Thus, from (i) we know that 1+i=2e4iπ .
Therefore,
(1+i)10=2e4iπ10⇒(1+i)10=(2)10e4iπ10⇒(1+i)10=22110e4iπ10
Applying (am)n=amn , we get
(1+i)10=221×10e4iπ×10
Which is
(1+i)10=(25)e25πi
⇒(1+i)10=(32)e25πi ………….. (ii)
Now we know the Euler’s formula,
eiθ=cosθ+isinθ .
Puttingθ=(25π) , we get,
ei(25π)=cos(25π)+isin(25π)
ei(25π)=0+i(1) ……. Since odd multiples of (2π) give 0 in cos functions and sin(25π)=sin(2π) which is 1.
Therefore, e25πi=i ……………….. (iii)
Substituting (iii) in (ii) we get
(1+i)10=(32)(i)
⇒(1+i)10=32i
Thus option (a) is correct.
Note: This problem can also be solved using binomial theorem which is
(a+b)n=nC0anb0+nC1an−1b1+nC2an−2b2+............+nC0a0bn
Putting a=1, b=I and n=10, we get,
(1+i)10=10C0(1)10(i)0+10C1(1)10−1(i)1+10C2(1)10−2(i)2+............+10C10(1)0(i)10
⇒(1+i)10=(1)(1)(1)+(10)(1)(i)+(45)(1)(i2)+........+(1)(1)(i10)⇒(1+i)10=1+10i+45i2+120i3+210i4+252i5+210i6+120i7+45i8+10i9+i10
Now given i2=−1
Therefore, i3=−i,i4=1,i5=i,i6=−1 and so on.
Therefore, (1+i)10=1+10i−45+120(−i)+210+252i−210−120i+45+10i−1⇒(1+i)10=0+32i⇒(1+i)10=32i