Solveeit Logo

Question

Question: Find the value of \(\lambda \) so that the matrix \(\left[ \begin{matrix} 5-\lambda & \lambda +...

Find the value of λ\lambda so that the matrix [5λλ+1 24 ]\left[ \begin{matrix} 5-\lambda & \lambda +1 \\\ 2 & 4 \\\ \end{matrix} \right] may be singular.

Explanation

Solution

We know that the determinant of singular matrix is 0 so find the determinant of the given matrix which will be calculated by multiplying 5λ5-\lambda with 4 and then find the multiplication of λ+1\lambda +1 with 2 and subtract the result of later multiplication with the former one and equate it to 0. Solve this equation and get the value of λ\lambda .

Complete step-by-step answer:
The matrix given in the above problem is:
[5λλ+1 24 ]\left[ \begin{matrix} 5-\lambda & \lambda +1 \\\ 2 & 4 \\\ \end{matrix} \right]
Let us assume this matrix as “A” so equating the above matrix to “A” we get,
A=[5λλ+1 24 ]A=\left[ \begin{matrix} 5-\lambda & \lambda +1 \\\ 2 & 4 \\\ \end{matrix} \right]
It is also mentioned in the above problem that the matrix is a singular matrix and we know that the determinant of a singular matrix is 0.
A=0\left| A \right|=0
Finding the determinant of matrix A we get,
A=(5λ)(4)2(λ+1)\left| A \right|=\left( 5-\lambda \right)\left( 4 \right)-2\left( \lambda +1 \right)
Multiplying 4 with (5λ)\left( 5-\lambda \right) and 2 with (λ+1)\left( \lambda +1 \right) we get,
A=(204λ)(2λ+2) A=204λ2λ2 A=186λ \begin{aligned} & \left| A \right|=\left( 20-4\lambda \right)-\left( 2\lambda +2 \right) \\\ & \Rightarrow \left| A \right|=20-4\lambda -2\lambda -2 \\\ & \Rightarrow \left| A \right|=18-6\lambda \\\ \end{aligned}
Now, equating the above determinant equal to 0 we get,
A=186λ=0 186λ=0 \begin{aligned} & \left| A \right|=18-6\lambda =0 \\\ & \Rightarrow 18-6\lambda =0 \\\ \end{aligned}
Adding 6λ6\lambda on both the sides of the above equation we get,
18=6λ18=6\lambda
Dividing 6 on both the sides of the above equation we get,
186=λ λ=3 \begin{aligned} & \dfrac{18}{6}=\lambda \\\ & \Rightarrow \lambda =3 \\\ \end{aligned}
From the above solution, we have solved the value of λ\lambda as 3.
Hence, the value of λ=3\lambda =3.

Note: You can verify the value of λ\lambda that you have got above by substituting the value of λ\lambda in the matrix given and see whether the determinant matrix is coming 0 or not.
The given matrix is:
[5λλ+1 24 ]\left[ \begin{matrix} 5-\lambda & \lambda +1 \\\ 2 & 4 \\\ \end{matrix} \right]
Substituting the value of λ\lambda as 3 in the above matrix we get,
[533+1 24 ] =[24 24 ] \begin{aligned} & \left[ \begin{matrix} 5-3 & 3+1 \\\ 2 & 4 \\\ \end{matrix} \right] \\\ & =\left[ \begin{matrix} 2 & 4 \\\ 2 & 4 \\\ \end{matrix} \right] \\\ \end{aligned}
Now, evaluating the determinant of the above matrix we get,
2(4)4(2) =88 =0 \begin{aligned} & 2\left( 4 \right)-4\left( 2 \right) \\\ & =8-8 \\\ & =0 \\\ \end{aligned}
Hence, on substituting the value of λ=3\lambda =3 in the matrix we have got the determinant value 0.