Solveeit Logo

Question

Question: Find the value of \(\lambda \And \mu \) if \(\left( 2\widehat{i}+6\widehat{j}+27\widehat{k} \right)\...

Find the value of λ&μ\lambda \And \mu if (2i^+6j^+27k^)×(i^+λj^+μk^)=0\left( 2\widehat{i}+6\widehat{j}+27\widehat{k} \right)\times \left( \widehat{i}+\lambda \widehat{j}+\mu \widehat{k} \right)=\overrightarrow{0}?

Explanation

Solution

First of all, we are going to find the cross product of the two vectors (2i^+6j^+27k^)&(i^+λj^+μk^)\left( 2\widehat{i}+6\widehat{j}+27\widehat{k} \right)\And \left( \widehat{i}+\lambda \widehat{j}+\mu \widehat{k} \right). We know that cross product of (a1i^+b1j^+c1k^)&(a2i^+b2j^+c2k^)\left( {{a}_{1}}\widehat{i}+{{b}_{1}}\widehat{j}+{{c}_{1}}\widehat{k} \right)\And \left( {{a}_{2}}\widehat{i}+{{b}_{2}}\widehat{j}+{{c}_{2}}\widehat{k} \right) is equal to i^j^k^ a1b1c1 a2b2c2 \left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\\ {{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\\ \end{matrix} \right|. Now, simplify this determinant, by expanding along the first row. Then as the R.H.S of this equation is equal to 0 so equating the coefficient of i^,j^,k^\widehat{i},\widehat{j},\widehat{k} to 0 and from this find the value of λ&μ\lambda \And \mu .

Complete step by step answer:
In the above problem, we have given the following vector equation:
(2i^+6j^+27k^)×(i^+λj^+μk^)=0\left( 2\widehat{i}+6\widehat{j}+27\widehat{k} \right)\times \left( \widehat{i}+\lambda \widehat{j}+\mu \widehat{k} \right)=\overrightarrow{0}
We know the cross product of two vectors (a1i^+b1j^+c1k^)&(a2i^+b2j^+c2k^)\left( {{a}_{1}}\widehat{i}+{{b}_{1}}\widehat{j}+{{c}_{1}}\widehat{k} \right)\And \left( {{a}_{2}}\widehat{i}+{{b}_{2}}\widehat{j}+{{c}_{2}}\widehat{k} \right) is equal to:
i^j^k^ a1b1c1 a2b2c2 \left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\\ {{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\\ \end{matrix} \right|
Now, finding the cross product of (2i^+6j^+27k^)&(i^+λj^+μk^)\left( 2\widehat{i}+6\widehat{j}+27\widehat{k} \right)\And \left( \widehat{i}+\lambda \widehat{j}+\mu \widehat{k} \right) using the above determinant form we get,
i^j^k^ 2627 1λμ \left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\\ 2 & 6 & 27 \\\ 1 & \lambda & \mu \\\ \end{matrix} \right|
Expanding along first row of the above determinant we get,
i^(6μ27λ)j^(2μ27)+k^(2λ6)\widehat{i}\left( 6\mu -27\lambda \right)-\widehat{j}\left( 2\mu -27 \right)+\widehat{k}\left( 2\lambda -6 \right)
As the above vector is equal to 0 so equating each of i^,j^&k^\widehat{i},\widehat{j}\And \widehat{k} to 0 we get,
6μ27λ=0......Eq.(1) 2μ27=0.........Eq.(2) 2λ6=0............Eq.(3) \begin{aligned} & 6\mu -27\lambda =0......Eq.(1) \\\ & 2\mu -27=0.........Eq.(2) \\\ & 2\lambda -6=0............Eq.(3) \\\ \end{aligned}
Solving eq. (2) we get,
2μ27=02\mu -27=0
Adding 27 on both the sides of the above equation we get,
2μ=272\mu =27
Dividing 2 on both the sides of the above equation we get,
μ=272\mu =\dfrac{27}{2}
From the above, we have calculated the value of μ\mu .
Now, we are going to solve eq. (3) and we get,
2λ6=02\lambda -6=0
Adding 6 on both the sides of the above equation and we get,
2λ=62\lambda =6
Dividing 2 on both the sides of the above equation and we get,
λ=62=3\lambda =\dfrac{6}{2}=3
From the above, we have calculated the value of λ\lambda as 3.

Hence, we have calculated the value of μ&λ\mu \And \lambda as 272&3\dfrac{27}{2}\And 3 respectively.

Note: We can check the values of λ&μ\lambda \And \mu obtained in the above solution by substituting these values in eq. (1) and see whether these values are satisfying this equation or not.
The values of λ&μ\lambda \And \mu are as follows:
λ=3; μ=272 \begin{aligned} & \lambda =3; \\\ & \mu =\dfrac{27}{2} \\\ \end{aligned}
Substituting these values in eq. (1) we get,
6(272)27(3)=06\left( \dfrac{27}{2} \right)-27\left( 3 \right)=0
In the L.H.S of the above equation, 6 will get divided by 2 by 3 times and the above equation will look like:
3(27)27(3)=0 8181=0 0=0 \begin{aligned} & 3\left( 27 \right)-27\left( 3 \right)=0 \\\ & \Rightarrow 81-81=0 \\\ & \Rightarrow 0=0 \\\ \end{aligned}
As you can see that L.H.S = R.H.S so λ&μ\lambda \And \mu are satisfying eq. (1).