Solveeit Logo

Question

Question: Find the value of k so that the following equation may represent pairs of straight lines: \(12{{x}...

Find the value of k so that the following equation may represent pairs of straight lines:
12x2kxy+2y2+11x5y+2=012{{x}^{2}}-kxy+2{{y}^{2}}+11x-5y+2=0

Explanation

Solution

Hint: Compare the given equation 12x2kxy+2y2+11x5y+2=012{{x}^{2}}-kxy+2{{y}^{2}}+11x-5y+2=0 with a general equation in second degree ax2+2hxy+by2+2gx+2fy+c=0a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0 then apply the condition for a pair of straight lines.

Complete step-by-step answer:
The equation 12x2kxy+2y2+11x5y+2=012{{x}^{2}}-kxy+2{{y}^{2}}+11x-5y+2=0 given in the question is an equation in second degree so we can compare this equation by ax2+2hxy+by2+2gx+2fy+c=0a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0.
12x2kxy+2y2+11x5y+2=012{{x}^{2}}-kxy+2{{y}^{2}}+11x-5y+2=0
ax2+2hxy+by2+2gx+2fy+c=0a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0
Comparing the coefficient of x2{{x}^{2}} will give a = 12.
Comparing the coefficient of xyxy will give h=k2h=-\dfrac{k}{2}.
Comparing the coefficient of y2{{y}^{2}} will give b = 2.
Comparing the coefficient of xx will give g=112g=\dfrac{11}{2}.
Comparing the coefficient of yy will give f=52f=-\dfrac{5}{2}.
Comparing the constant will give cc = 2.
The given equation represents a pair of straight lines so the condition for a general second degree equation ax2+2hxy+by2+2gx+2fy+c=0a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0 is:
abc+2fghaf2bg2cf2=0abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{f}^{2}}=0
Substituting the value of a, b, c, f, g, h in the above equation we get,
(12)(2)(2)+2(52)(112)(k2)12(254)2(1214)2(254)=0 48+55k4751212252=0 271462+55k4=0 55k42773=0 55k4100=0 k=40055 k=8011 \begin{aligned} & \left( 12 \right)\left( 2 \right)\left( 2 \right)+2\left( -\dfrac{5}{2} \right)\left( \dfrac{11}{2} \right)\left( -\dfrac{k}{2} \right)-12\left( \dfrac{25}{4} \right)-2\left( \dfrac{121}{4} \right)-2\left( \dfrac{25}{4} \right)=0 \\\ & \Rightarrow 48+\dfrac{55k}{4}-75-\dfrac{121}{2}-\dfrac{25}{2}=0 \\\ & \Rightarrow -27-\dfrac{146}{2}+\dfrac{55k}{4}=0 \\\ & \Rightarrow \dfrac{55k}{4}-27-73=0 \\\ & \Rightarrow \dfrac{55k}{4}-100=0 \\\ & \Rightarrow k=\dfrac{400}{55} \\\ & \Rightarrow k=\dfrac{80}{11} \\\ \end{aligned}
Hence, the value of k for which the given equation represents a pair of straight lines is8011\dfrac{80}{11}.

Note: In the above problem, you might be wondering from where this condition for straight lines has come. The derivation for condition of a second degree equation represents a pair of straight lines is as follows:
ax2+2hxy+by2+2gx+2fy+c=0a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0
ax2+(2hy+2g)x+by2+2fy+c=0a{{x}^{2}}+\left( 2hy+2g \right)x+b{{y}^{2}}+2fy+c=0
The above equation is quadratic in x so the solution is:
x=(2hy+2g)±(2hy+2g)24(ax2)(by2+2fy+c)2ax=\dfrac{-\left( 2hy+2g \right)\pm \sqrt{{{\left( 2hy+2g \right)}^{2}}-4\left( a{{x}^{2}} \right)\left( b{{y}^{2}}+2fy+c \right)}}{2a}
x=(hy+g)±(hy+g)2(ax2)(by2+2fy+c)ax=\dfrac{-\left( hy+g \right)\pm \sqrt{{{\left( hy+g \right)}^{2}}-\left( a{{x}^{2}} \right)\left( b{{y}^{2}}+2fy+c \right)}}{a}
For the equation to be pair of straight lines, expression in the square root must be a perfect square so:

& {{h}^{2}}{{y}^{2}}+{{g}^{2}}+2hyg-ab{{y}^{2}}-2afy-ac \\\ & \left( {{h}^{2}}-ab \right){{y}^{2}}+\left( 2gh-2af \right)y+\left( {{g}^{2}}-ac \right) \\\ \end{aligned}$$ The above quadratic equation in y is a perfect square when the discriminant of the above equation is 0. D = 0 for $$\left( {{h}^{2}}-ab \right){{y}^{2}}+\left( 2gh-2af \right)y+\left( {{g}^{2}}-ac \right)$$ $D={{\left( 2gh-2af \right)}^{2}}-4\left( {{h}^{2}}-ab \right)\left( {{g}^{2}}-ac \right)=0$ Solving the above equation will give: $abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{f}^{2}}=0$