Solveeit Logo

Question

Question: Find the value of k so that the following equations may represent pairs of straight lines: \(kxy-8...

Find the value of k so that the following equations may represent pairs of straight lines:
kxy8x+9y12=0kxy-8x+9y-12=0

Explanation

Solution

Hint: General equation of conic i.e. ax2+by2+2hxy+2gx+2fy+c=0a{{x}^{2}}+b{{y}^{2}}+2hxy+2gx+2fy+c=0 will represent pairs of straight lines if
ahg hbf gfc =0 or abc+2fghaf2bg2ch2=0 \begin{aligned} & \left| \begin{matrix} a & h & g \\\ h & b & f \\\ g & f & c \\\ \end{matrix} \right|=0 \\\ & or \\\ & abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0 \\\ \end{aligned}

We have equation given;
kxy8x+9y12=0kxy-8x+9y-12=0……………….(1)
Now, as we know that general conic equation is given as;
ax2+by2+2hxy+2gx+2fy+c=0a{{x}^{2}}+b{{y}^{2}}+2hxy+2gx+2fy+c=0…………(2)
Above equation of conic will represent a pair of straight lines, circle, ellipse, parabola etc. with some condition among the coefficients of the given equation (2).
We know that conic will represent pair of straight lines if;
ahg hbf gfc =0\left| \begin{matrix} a & h & g \\\ h & b & f \\\ g & f & c \\\ \end{matrix} \right|=0
On expanding the above determinant, we get;
abc+2fghaf2bg2ch2=0abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0…………………..(3)
Now, comparing equation given or equation (1) with equation (2), we get;
a=0 b=0 2h=k or h=k2 \begin{aligned} & a=0 \\\ & b=0 \\\ & 2h=k\text{ or }h=\dfrac{k}{2} \\\ \end{aligned}
2g=8 or g=4 2f=9 or f=92 \begin{aligned} & 2g=-8\text{ or }g=-4 \\\ & 2f=9\text{ or }f=\dfrac{9}{2} \\\ \end{aligned}
And c=12And\text{ }c=-12
Now, we have values of all the coefficients required for equation (3). Putting values in it, we get;
abc+2fghaf2bg2ch2=0 (0)(0)(12)+2(92)(4)(k2)(0)(92)2(0)(4)2(12)(k2)2=0 \begin{aligned} & abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0 \\\ & \left( 0 \right)\left( 0 \right)\left( -12 \right)+2\left( \dfrac{9}{2} \right)\left( -4 \right)\left( \dfrac{k}{2} \right)-\left( 0 \right){{\left( \dfrac{9}{2} \right)}^{2}}-\left( 0 \right){{\left( -4 \right)}^{2}}-\left( -12 \right){{\left( \dfrac{k}{2} \right)}^{2}}=0 \\\ \end{aligned}
On simplifying the above relation, we get;
018k00+3k2=0 3k218k=0 \begin{aligned} & 0-18k-0-0+3{{k}^{2}}=0 \\\ & 3{{k}^{2}}-18k=0 \\\ \end{aligned}
Taking out ‘k’ common from the above equation, we get;
(k)(3k18)=0\left( k \right)\left( 3k-18 \right)=0
Therefore,
k = 0 and 3k = 18 or k = 6
Now, we have two values of k, i.e.
k = 0 and k = 6.
Putting k = 0, in equation one, we get equation 8x+9y12=0-8x+9y-12=0, which represents one straight in coordinate plane.
Hence, k = 0 is not possible for the representation of a pair of straight lines.
Hence, k = 6 is the answer which gives pairs of straight line as;
6xy8x+9y12=06xy-8x+9y-12=0

Note: One can go wrong while comparing the given equation with general conic ax2+2hxy+by2+2gx+2fy+c=0a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0 to get the coefficients. So need to be very careful while substituting the values in abc+2fghaf2bg2ch2=0abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0.
One need to verify k = 0 by putting in the given equation for checking the given equation is of the pairs of straight lines.