Solveeit Logo

Question

Question: Find the value of k so that the area of triangle ABC with A \[\left( {k + 1,{\text{ }}1} \right),{\t...

Find the value of k so that the area of triangle ABC with A (k+1, 1), B (4, 3), and C (7, k)\left( {k + 1,{\text{ }}1} \right),{\text{ }}B{\text{ }}\left( {4,{\text{ }} - 3} \right),{\text{ }}and{\text{ }}C{\text{ }}\left( {7,{\text{ }} - k} \right), is 66 square units.

Explanation

Solution

Hint : In this question to find the value of we will use this formula to calculate area of triangle==
12x1(y2y3)+x2(y3y1)+x3(y1y2)\dfrac{1}{2}|{x_1}({y_2} - {y_3}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2})| and get the value of k.

Complete step-by-step answer :
We are given that area of triangle ABCABC
= 6 sq. units.= {\text{ }}6{\text{ }}sq.{\text{ }}units.

And co-ordinate are as follows
x1=k+1 x2=4 x3=7 y1=1 y2=3 y3=k  {x_1} = k + 1 \\\ {x_2} = 4 \\\ {x_3} = 7 \\\ {y_1} = 1 \\\ {y_2} = - 3 \\\ {y_3} = - k \\\
where, A (k+1, 1), B (4, 3), and C (7, k)\left( {k + 1,{\text{ }}1} \right),{\text{ }}B{\text{ }}\left( {4,{\text{ }} - 3} \right),{\text{ }}and{\text{ }}C{\text{ }}\left( {7,{\text{ }} - k} \right)
Area of triangle ABC=12x1(y2y3)+x2(y3y1)+x3(y1y2)\Rightarrow \text{Area of triangle ABC} = \dfrac{1}{2}|{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)
6=12(k+1)(3+k)+4(k1)+7(1+3)\Rightarrow 6 = \dfrac{1}{2}\left| {\left( {k + 1} \right)\left( { - 3 + k} \right) + 4\left( { - k - 1} \right) + 7\left( {1 + 3} \right)} \right|
12=k22k34k+2412 = \left| {{k^2} - 2k - 3 - 4k + 24} \right|
12=k26k+2112 = \left| {{k^2} - 6k + 21} \right|
case:(1)case:\left( 1 \right)
12=k26k+2112 = {k^2} - 6k + 21
k26k+9=0{k^2} - 6k + 9 = 0
k=3k = 3
case:(2)case:\left( 2 \right)
12=k26k+21- 12 = {k^2} - 6k + 21
k26k+33=0{k^2} - 6k + 33 = 0
D=b24acD = {b^2} - 4ac
=(364×1×33)<0= \left( {36 - 4 \times 1 \times 33} \right) < 0
So, it does not have real roots
Hence value of k = 3. = {\text{ }}3.

Note : Students should keep in mind that area is given 6 sq.6{\text{ }}sq.units, but we must use +6 + 6 and 6 - 6 both the values to calculate k. Mostly, students miss this. Also, formulas for the area of the triangle should be learned.