Solveeit Logo

Question

Question: Find the value of \[k\]if which the function \[f\left( x \right)=\left\\{ \begin{aligned} & {{\l...

Find the value of kkif which the function f\left( x \right)=\left\\{ \begin{aligned} & {{\left( \dfrac{4}{5} \right)}^{\dfrac{\tan 4x}{\tan 5x}}},0 < x < \dfrac{\pi }{2} \\\ & k+\dfrac{2}{5}\,\,\,\,\,\,\,,x=\dfrac{\pi }{2}\, \\\ \end{aligned} \right.​​ is continuous at x=π2x=\dfrac{\pi }{2}​.
(a) 1720\dfrac{17}{20}
(b) 25\dfrac{2}{5}
(c) 35\dfrac{3}{5}
(d) 25-\dfrac{2}{5}

Explanation

Solution

In this question, in order to the value of kk given the function f\left( x \right)=\left\\{ \begin{aligned} & {{\left( \dfrac{4}{5} \right)}^{\dfrac{\tan 4x}{\tan 5x}}},0 < x < \dfrac{\pi }{2} \\\ & k+\dfrac{2}{5}\,\,\,\,\,\,\,,x=\dfrac{\pi }{2}\, \\\ \end{aligned} \right. ​​ which is continuous at x=π2x=\dfrac{\pi }{2}​. Now we know that if a function f(x)f\left( x \right) is continuous at x=ax=a, then we have limxaf(x)=f(a)\displaystyle \lim_{x \to a}f\left( x \right)=f\left( a \right). Therefore here we should have limxπ2f(x)=f(π2)\displaystyle \lim_{x \to \dfrac{\pi }{2}}f\left( x \right)=f\left( \dfrac{\pi }{2} \right). This is true because of the fact that if a f(x)f\left( x \right) is continuous at x=ax=a then limxaf(x)=f(limxax)\displaystyle \lim_{x \to a}f\left( x \right)=f\left( \displaystyle \lim_{x \to a}x \right). Using these properties for continuous functions we will get our desired answer.

Complete step by step answer:
Let the function ff is defined by f\left( x \right)=\left\\{ \begin{aligned} & {{\left( \dfrac{4}{5} \right)}^{\dfrac{\tan 4x}{\tan 5x}}},0 < x < \dfrac{\pi }{2} \\\ & k+\dfrac{2}{5}\,\,\,\,\,\,\,,x=\dfrac{\pi }{2}\, \\\ \end{aligned} \right..
Now for the values of xx such that 0<x<π20 < x < \dfrac{\pi }{2}, we have that
f(x)=(45)tan4xtan5xf\left( x \right)={{\left( \dfrac{4}{5} \right)}^{\dfrac{\tan 4x}{\tan 5x}}}
Since we know that if a function f(x)f\left( x \right) is continuous at x=ax=a, then we have limxaf(x)=f(a)\displaystyle \lim_{x \to a}f\left( x \right)=f\left( a \right).
Therefore here we should have limxπ2f(x)=f(π2)\displaystyle \lim_{x \to \dfrac{\pi }{2}}f\left( x \right)=f\left( \dfrac{\pi }{2} \right).
Now since f(x)=(45)tan4xtan5xf\left( x \right)={{\left( \dfrac{4}{5} \right)}^{\dfrac{\tan 4x}{\tan 5x}}} and f(π2)=k+25f\left( \dfrac{\pi }{2} \right)=k+\dfrac{2}{5}, therefore we have that
limxπ2(45)tan4xtan5x=k+25............(1)\displaystyle \lim_{x \to \dfrac{\pi }{2}}{{\left( \dfrac{4}{5} \right)}^{\dfrac{\tan 4x}{\tan 5x}}}=k+\dfrac{2}{5}............(1)
Now since we have the property of trigonometric function that 1tanx=cotx\dfrac{1}{\tan x}=\cot x, therefore we have
tan4xtan5x=tan4xcot5x...........(2)\dfrac{\tan 4x}{\tan 5x}=\tan 4x\cot 5x...........(2)
Substituting the value in equation (2) in (1), we get
limxπ2(45)tan4xcot5x=k+25\displaystyle \lim_{x \to \dfrac{\pi }{2}}{{\left( \dfrac{4}{5} \right)}^{\tan 4x\cot 5x}}=k+\dfrac{2}{5}
Since we know that if a f(x)f\left( x \right) is continuous at x=ax=a then limxaf(x)=f(limxax)\displaystyle \lim_{x \to a}f\left( x \right)=f\left( \displaystyle \lim_{x \to a}x \right).
Therefore using this, we get that

& \displaystyle \lim_{x \to \dfrac{\pi }{2}}{{\left( \dfrac{4}{5} \right)}^{\tan 4x\cot 5x}}=k+\dfrac{2}{5} \\\ & \Rightarrow {{\left( \dfrac{4}{5} \right)}^{\displaystyle \lim_{x \to \dfrac{\pi }{2}}\left( \tan 4x\cot 5x \right)}}=k+\dfrac{2}{5}........(3) \end{aligned}$$ Now we will evaluate the limit $$\displaystyle \lim_{x \to \dfrac{\pi }{2}}\left( \tan 4x\cot 5x \right)$$. Then we have $$\begin{aligned} & \displaystyle \lim_{x \to \dfrac{\pi }{2}}\left( \tan 4x\tan 5x \right)=\tan 4\left( \dfrac{\pi }{2} \right)\cot 5\left( \dfrac{\pi }{2} \right) \\\ & =\tan 2\pi \cot \dfrac{5\pi }{4} \end{aligned}$$ Now since the value of $$\tan 2\pi =0$$, therefore we have $$\begin{aligned} & \displaystyle \lim_{x \to \dfrac{\pi }{2}}\left( \tan 4x\tan 5x \right)=\tan 2\pi \cot \dfrac{5\pi }{4} \\\ & =0 \end{aligned}$$ Therefore using the above value in the limit in equation (3), we get $$\begin{aligned} & {{\left( \dfrac{4}{5} \right)}^{\displaystyle \lim_{x \to \dfrac{\pi }{2}}\left( \tan 4x\cot 5x \right)}}=k+\dfrac{2}{5} \\\ & \Rightarrow {{\dfrac{4}{5}}^{0}}=k+\dfrac{2}{5} \\\ \end{aligned}$$ Now since $${{a}^{0}}=1$$ for all values of $$a$$, therefore from the above equation we have, $$\begin{aligned} & 1=k+\dfrac{2}{5} \\\ & \Rightarrow k=1-\dfrac{2}{5} \\\ & \Rightarrow k=\dfrac{5-2}{5} \\\ & \Rightarrow k=\dfrac{3}{5} \\\ \end{aligned}$$ Therefore we have that the value of $$k$$ is equal to $$\dfrac{3}{5}$$. **So, the correct answer is “Option C”.** **Note:** In this problem, we know that if a function $$f\left( x \right)$$ is continuous at $$x=a$$, then we have $$\displaystyle \lim_{x \to a}f\left( x \right)=f\left( a \right)$$. Therefore here we should have $$\displaystyle \lim_{x \to \dfrac{\pi }{2}}f\left( x \right)=f\left( \dfrac{\pi }{2} \right)$$. This is true because of the fact that if a $$f\left( x \right)$$ is continuous at $$x=a$$ then $$\displaystyle \lim_{x \to a}f\left( x \right)=f\left( \displaystyle \lim_{x \to a}x \right)$$.we are using this same property while evaluating the limit $$\displaystyle \lim_{x \to \dfrac{\pi }{2}}{{\left( \dfrac{4}{5} \right)}^{\tan 4x\cot 5x}}$$.