Solveeit Logo

Question

Question: Find the value of \[k\], if \[\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^4} - 1}}{{x - 1}} = \matho...

Find the value of kk, if limx1x41x1=limxkx3k3x2k2\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^4} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to k} \dfrac{{{x^3} - {k^3}}}{{{x^2} - {k^2}}}

Explanation

Solution

Here, we are required to find the value of kk, when we are given two limits which are equal to each other. We will solve both the limits separately using some mathematical formulas in the numerators and denominators. We will then substitute the limit in the place of xx to get the value of both the LHS and RHS. Then we will equate these values and solve it further to get the required value of kk.

Formula Used:
We will use the following formulas:

  1. a2b2=(ab)(a+b){a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)
  2. (a3b3)=(ab)(a2+ab+b2)\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)

Complete Step by step Solution:
First, we will find the value of LHS i.e. limx1x41x1\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^4} - 1}}{{x - 1}}.
Also, we can write this as:
limx1x41x1=limx1(x2)212x1\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^4} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \dfrac{{{{\left( {{x^2}} \right)}^2} - {1^2}}}{{x - 1}}
Now, using the formula a2b2=(ab)(a+b){a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right) in the numerator, we get,
limx1x41x1=limx1(x21)(x2+1)x1\Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^4} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {{x^2} - 1} \right)\left( {{x^2} + 1} \right)}}{{x - 1}}
Again, using the same formula, a2b2=(ab)(a+b){a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right) again in the numerator, we get,
limx1x41x1=limx1(x1)(x+1)(x2+1)x1\Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^4} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right)}}{{x - 1}}
Cancelling out (x1)\left( {x - 1} \right) from the numerator and denominator, we get
limx1x41x1=limx1(x+1)(x2+1)\Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^4} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \left( {x + 1} \right)\left( {{x^2} + 1} \right)
Now, substituting x=1x = 1 in the above equation, we get
limx1x41x1=(1+1)(1+1)\Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^4} - 1}}{{x - 1}} = \left( {1 + 1} \right)\left( {1 + 1} \right)
limx1x41x1=2×2=4\Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^4} - 1}}{{x - 1}} = 2 \times 2 = 4
Therefore, LHS =limx1x41x1=4 = \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^4} - 1}}{{x - 1}} = 4
Now, we will solve the RHS, i.e. limxkx3k3x2k2\mathop {\lim }\limits_{x \to k} \dfrac{{{x^3} - {k^3}}}{{{x^2} - {k^2}}}.
Here, using the formula (a3b3)=(ab)(a2+ab+b2)\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right) in the numerator, we get
limxkx3k3x2k2=limxk(xk)(x2+xk+k2)x2k2\Rightarrow \mathop {\lim }\limits_{x \to k} \dfrac{{{x^3} - {k^3}}}{{{x^2} - {k^2}}} = \mathop {\lim }\limits_{x \to k} \dfrac{{\left( {x - k} \right)\left( {{x^2} + xk + {k^2}} \right)}}{{{x^2} - {k^2}}}
Also, using the formula a2b2=(ab)(a+b){a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right) in the denominator, we get, limxkx3k3x2k2=limxk(xk)(x2+xk+k2)(xk)(x+k) \Rightarrow \mathop {\lim }\limits_{x \to k} \dfrac{{{x^3} - {k^3}}}{{{x^2} - {k^2}}} = \mathop {\lim }\limits_{x \to k} \dfrac{{\left( {x - k} \right)\left( {{x^2} + xk + {k^2}} \right)}}{{\left( {x - k} \right)\left( {x + k} \right)}}
Cancelling out the same terms from the numerator and denominator, we get
limxkx3k3x2k2=limxk(x2+xk+k2)(x+k)\Rightarrow \mathop {\lim }\limits_{x \to k} \dfrac{{{x^3} - {k^3}}}{{{x^2} - {k^2}}} = \mathop {\lim }\limits_{x \to k} \dfrac{{\left( {{x^2} + xk + {k^2}} \right)}}{{\left( {x + k} \right)}}
Now, substituting x=kx = k in the above equation, we get
limxkx3k3x2k2=(k2+(k)(k)+k2)(k+k)\Rightarrow \mathop {\lim }\limits_{x \to k} \dfrac{{{x^3} - {k^3}}}{{{x^2} - {k^2}}} = \dfrac{{\left( {{k^2} + \left( k \right)\left( k \right) + {k^2}} \right)}}{{\left( {k + k} \right)}}
limxkx3k3x2k2=3k22k\Rightarrow \mathop {\lim }\limits_{x \to k} \dfrac{{{x^3} - {k^3}}}{{{x^2} - {k^2}}} = \dfrac{{3{k^2}}}{{2k}}
Now, according to the question, limx1x41x1=limxkx3k3x2k2\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^4} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to k} \dfrac{{{x^3} - {k^3}}}{{{x^2} - {k^2}}}.
Therefore, equating their values, we get
4=3k22k4 = \dfrac{{3{k^2}}}{{2k}}………………………..(1)\left( 1 \right)
On cross multiplication, we get
8k=3k2\Rightarrow 8k = 3{k^2}
3k28k=0\Rightarrow 3{k^2} - 8k = 0
Taking kk common, we get
k(3k8)=0\Rightarrow k\left( {3k - 8} \right) = 0
Using zero product property, we get
k=0k = 0
Or
3k8=03k - 8 = 0
Adding 8 on both sides, we get
3k=8\Rightarrow 3k = 8
Dividing both sides by 3, we get
k=83\Rightarrow k = \dfrac{8}{3}
Now, substituting k=0k = 0 in equation (1)\left( 1 \right), we get
43(0)2(0)04 \ne \dfrac{{3\left( 0 \right)}}{{2\left( 0 \right)}} \ne 0
We can see that LHS \ne RHS.
Hence, the value of k=0k = 0 is rejected.
Now substituting k=83k = \dfrac{8}{3} in equation (1)\left( 1 \right), we get
4=3(83)22(83)\Rightarrow 4 = \dfrac{{3{{\left( {\dfrac{8}{3}} \right)}^2}}}{{2\left( {\dfrac{8}{3}} \right)}}
Applying exponent on the terms, we get
4=3(649)2(83)\Rightarrow 4 = \dfrac{{3\left( {\dfrac{{64}}{9}} \right)}}{{2\left( {\dfrac{8}{3}} \right)}}
Simplifying the expression, we get
4=(643)(163)=6416=4\Rightarrow 4 = \dfrac{{\left( {\dfrac{{64}}{3}} \right)}}{{\left( {\dfrac{{16}}{3}} \right)}} = \dfrac{{64}}{{16}} = 4
Here, LHS == RHS

Hence, the value of k=83k = \dfrac{8}{3}.
Therefore, this is the required answer.

Note:
In mathematics, a limit is a value that a function approaches as the input or the index approaches some value. Limits are an essential element of calculus and are used to define continuity, integrals and derivatives. ‘Archimedes of Syracuse’ first developed the idea of limits in the third century B.C. to measure curved figures and the volume of a sphere. Limits are always applied at the end and not at the beginning because if it is applied in the beginning then we will get either 0 or infinity, which will be an incorrect answer.