Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

Find the value of kk, if for the complex numbers z1z_{1} and z2z_{2}, 1zˉ1z22z1z22=k(1z12)(1z22)\left|1-\bar{z}_{1}z_{2}\right|^{2}-\left|z_{1}-z_{2}\right|^{2} =k\left(1-\left|z_{1}\right|^{2}\right)\left(1-\left|z_{2}\right|^{2}\right).

A

22

B

33

C

11

D

44

Answer

11

Explanation

Solution

L.H.S.L.H.S. =1zˉ1z22z1z22=\left|1-\bar{z}_{1}z_{2}\right|^{2}-\left|z_{1}-z_{2}\right|^{2} =(1zˉ1z2)(1zˉ1z2)(z1z2)(z1z2)=\left(1-\bar{z}_{1}z_{2}\right)\left(\overline{1-\bar{z}_{1} z}_{2}\right)-\left(z_{1}-z_{2}\right)\left(\overline{z_{1}-z_{2}}\right) =(1zˉ1z2)(1z1zˉ2)(z1z2)(zˉ1zˉ2)=\left(1-\bar{z}_{1}z_{2}\right)\left(1-z_{1}\bar{z}_{2}\right)-\left(z_{1}-z_{2}\right)\left(\bar{z}_{1}-\bar{z}_{2}\right) =1+z1zˉ1z2zˉ2z1zˉ1z2zˉ2=1+z_{1}\bar{z}_{1} z_{2} \bar{z}_{2}-z_{1} \bar{z}_{1}-z_{2} \bar{z}_{2} =1+z12z22z12z22=1+\left|z_{1}\right|^{2}\cdot\left|z_{2}\right|^{2}-\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2} =(1z12)(1z22)=\left(1-\left|z_{1}\right|^{2}\right)\left(1-\left|z_{2}\right|^{2}\right) R.H.S.=k(1z12)(1z22)R.H.S. =k\left(1-\left|z_{1}\right|^{2}\right)\left(1-\left|z_{2}\right|^{2}\right) Hence, equating L.H.S.L.H.S. and R.H.S.R.H.S., we get k=1k = 1.