Solveeit Logo

Question

Question: Find the value of k for the given expression \[\left( {1 - \cot 22^\circ } \right)\left( {1 - \cot 2...

Find the value of k for the given expression (1cot22)(1cot23)=k\left( {1 - \cot 22^\circ } \right)\left( {1 - \cot 23^\circ } \right) = \sqrt k

Explanation

Solution

The given question deals with the concept of trigonometry. In order to solve this question we will take use trigonometric identity related to cot theta i.e., cot(A+B)=cotA×cotB1cotB+cotA\cot (A + B) = \dfrac{{\cot A \times \cot B - 1}}{{\cot B + \cot A}}. We will assume cotA=cot22\cot A = \cot 22^\circ and cotB=cot23\cot B = \cot 23^\circ put these values in the trigonometric identity and solve it until we reach a conclusion.

Complete step by step solution:
Given that, (1cot22)(1cot23)=k\left( {1 - \cot 22^\circ } \right)\left( {1 - \cot 23^\circ } \right) = \sqrt k
We know that 22+23=4522^\circ + 23^\circ = 45^\circ
We have the given expression in cot theta, therefore we use identity related to cot theta i.e., cot(A+B)=cotA×cotB1cotB+cotA(1)\cot (A + B) = \dfrac{{\cot A \times \cot B - 1}}{{\cot B + \cot A}} - - - - - (1).
Now, let us assume, cotA=cot22\cot A = \cot 22^\circ and cotB=cot23\cot B = \cot 23^\circ
Here, put these values into the trigonometric identity above (1)
Thus, we have,
cot(22+23)=cot22×cot231cot23+cot22\cot \left( {22^\circ + 23^\circ } \right) = \dfrac{{\cot 22^\circ \times \cot 23^\circ - 1}}{{\cot 23^\circ + \cot 22^\circ }}
Which is,
1=cot22×cot231cot23+cot22\Rightarrow 1 = \dfrac{{\cot 22^\circ \times \cot 23^\circ - 1}}{{\cot 23^\circ + \cot 22^\circ }}

As we know cot45=1\cot 45^\circ = 1 from the trigonometric table of values.Simplifying the above expression we get,
cot23+cot22=cot22×cot231\Rightarrow \cot 23^\circ + \cot 22^\circ = \cot 22^\circ \times \cot 23^\circ - 1
1=cot22×cot23cot23cot22\Rightarrow 1 = \cot 22^\circ \times \cot 23^\circ - \cot 23^\circ - \cot 22^\circ
Now, we add 1 to both the sides of the above expression
1+1=cot22×cot23cot23cot22+1\Rightarrow 1 + 1 = \cot 22^\circ \times \cot 23^\circ - \cot 23^\circ - \cot 22^\circ + 1
Rearranging the above expression further we get,
2=cot22×cot23cot22+1cot23\Rightarrow 2 = \cot 22^\circ \times \cot 23^\circ - \cot 22^\circ + 1 - \cot 23^\circ
Here, we take cot22- \cot 22^\circ common from the RHS of the above expression

We get,
2=cot22(cot23+1)+(1cot23)\Rightarrow 2 = - \cot 22^\circ \left( { - \cot 23^\circ + 1} \right) + \left( {1 - \cot 23^\circ } \right)
Further, taking the common factor from the above expression we get,
2=(cot23+1)(1cot22)\Rightarrow 2 = \left( { - \cot 23^\circ + 1} \right)\left( {1 - \cot 22^\circ } \right)
Rearranging the above expression
We get,
2=(1cot22)(1cot23)\therefore 2 = \left( {1 - \cot 22^\circ } \right)\left( {1 - \cot 23^\circ } \right)
We know, 4=2\sqrt 4 = 2 therefore, the value of k is 4.

Hence, the value of kk is 44.

Note: The value of cot is listed in the standard trigonometric table of values. Trigonometric table consists of trigonometric ratios from 0 degrees to 360 degrees. These trigonometric ratios are:
Sine= Hypotenuse by base
Cosine= Base by hypotenuse
Tangent= Perpendicular by base
The other three ratios are cosecant, secant and cotangent and they are reciprocal to the above listed ratios respectively. The trigonometric table is as follows:

Angle in degrees030456090180270360
Sine0012\dfrac{1}{2}12\dfrac{1}{{\sqrt 2 }}32\dfrac{{\sqrt 3 }}{2}11001 - 100
Cosine1132\dfrac{{\sqrt 3 }}{2}12\dfrac{1}{{\sqrt 2 }}12\dfrac{1}{2}001 - 10011
Tangent0013\dfrac{1}{{\sqrt 3 }}113\sqrt 3 Not defined00Not defined1
CosecantNot defined222\sqrt 2 23\dfrac{2}{{\sqrt 3 }}11Not defined1 - 1Not defined
Secant1123\dfrac{2}{{\sqrt 3 }}2\sqrt 2 22Not defined1 - 1Not defined11
cotangentNot defined3\sqrt 3 1113\dfrac{1}{{\sqrt 3 }}00Not defined00Not defined

Here, the value of cot theta we have used to solve the above question is derived from the above table.