Solveeit Logo

Question

Question: Find the value of inverse trigonometric function \({\cot ^{ - 1}}\left[ {\dfrac{{\sqrt {1 - \sin x} ...

Find the value of inverse trigonometric function cot1[1sinx+1+sinx1sinx1+sinx]{\cot ^{ - 1}}\left[ {\dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}} \right] where 0<x<π20 < x < \dfrac{\pi }{2}.
A. x2 B. π22x C. 2πx D. πx2  {\text{A}}{\text{. }}\dfrac{x}{2} \\\ {\text{B}}{\text{. }}\dfrac{\pi }{2} - 2x \\\ {\text{C}}{\text{. }}2\pi - x \\\ {\text{D}}{\text{. }}\pi - \dfrac{x}{2} \\\

Explanation

Solution

Hint: Here, we will convert the term inside the inverse cotangent function i.e., 1sinx+1+sinx1sinx1+sinx\dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }} in terms of cotangent function of some angle and then we will use the formula cot1[cotθ]=θ{\cot ^{ - 1}}\left[ {\cot \theta } \right] = \theta in order to obtain the value of the required expression.

Complete step-by-step answer:

Let us suppose the function y=1sinx+1+sinx1sinx1+sinx (1)y = \dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}{\text{ }} \to {\text{(1)}}.
In order to rationalize the function given in the RHS of equation (1), we will multiply and divide the RHS with the term[1sinx1+sinx]\left[ {\sqrt {1 - \sin x} - \sqrt {1 + \sin x} } \right]. Now, equation (1) becomes

y=[1sinx+1+sinx1sinx1+sinx]×[1sinx1+sinx1sinx1+sinx] y=[(1sinx+1+sinx)(1sinx1+sinx)(1sinx1+sinx)(1sinx1+sinx)] y=[(1sinx)2(1+sinx)2(1sinx1+sinx)2] y=[1sinx(1+sinx)(1sinx)2+(1+sinx)22(1sinx)(1+sinx)] y=[1sinx1sinx1sinx+1+sinx2[(1sinx)(1+sinx)]] y=[2sinx22[1sinx+sinx(sinx)2]] y=[2sinx2[11(sinx)2]] (1)  y = \left[ {\dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}} \right] \times \left[ {\dfrac{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}} \right] \\\ \Rightarrow y = \left[ {\dfrac{{\left( {\sqrt {1 - \sin x} + \sqrt {1 + \sin x} } \right)\left( {\sqrt {1 - \sin x} - \sqrt {1 + \sin x} } \right)}}{{\left( {\sqrt {1 - \sin x} - \sqrt {1 + \sin x} } \right)\left( {\sqrt {1 - \sin x} - \sqrt {1 + \sin x} } \right)}}} \right] \\\ \Rightarrow y = \left[ {\dfrac{{{{\left( {\sqrt {1 - \sin x} } \right)}^2} - {{\left( {\sqrt {1 + \sin x} } \right)}^2}}}{{{{\left( {\sqrt {1 - \sin x} - \sqrt {1 + \sin x} } \right)}^2}}}} \right] \\\ \Rightarrow y = \left[ {\dfrac{{1 - \sin x - \left( {1 + \sin x} \right)}}{{{{\left( {\sqrt {1 - \sin x} } \right)}^2} + {{\left( {\sqrt {1 + \sin x} } \right)}^2} - 2\left( {\sqrt {1 - \sin x} } \right)\left( {\sqrt {1 + \sin x} } \right)}}} \right] \\\ \Rightarrow y = \left[ {\dfrac{{1 - \sin x - 1 - \sin x}}{{1 - \sin x + 1 + \sin x - 2\left[ {\sqrt {\left( {1 - \sin x} \right)\left( {1 + \sin x} \right)} } \right]}}} \right] \\\ \Rightarrow y = \left[ {\dfrac{{ - 2\sin x}}{{2 - 2\left[ {\sqrt {1 - \sin x + \sin x - {{\left( {\sin x} \right)}^2}} } \right]}}} \right] \\\ \Rightarrow y = \left[ {\dfrac{{ - 2\sin x}}{{2\left[ {1 - \sqrt {1 - {{\left( {\sin x} \right)}^2}} } \right]}}} \right]{\text{ }} \to {\text{(1)}} \\\

As we know that (sinx)2+(cosx)2=1{\left( {\sin x} \right)^2} + {\left( {\cos x} \right)^2} = 1
(cosx)2=1(sinx)2 cosx=1(sinx)2 (2)  \Rightarrow {\left( {\cos x} \right)^2} = 1 - {\left( {\sin x} \right)^2} \\\ \Rightarrow \cos x = \sqrt {1 - {{\left( {\sin x} \right)}^2}} {\text{ }} \to {\text{(2)}} \\\
By substituting the equation (2) in equation (1), we get

y=[2sinx2[1cosx]] y=[sinx1cosx] (3)  \Rightarrow y = \left[ {\dfrac{{ - 2\sin x}}{{2\left[ {1 - \cos x} \right]}}} \right] \\\ \Rightarrow y = \left[ {\dfrac{{ - \sin x}}{{1 - \cos x}}} \right]{\text{ }} \to (3) \\\

Also, we know that sinx=2sin(x2)cos(x2) (4)\sin x = 2\sin \left( {\dfrac{x}{2}} \right)\cos \left( {\dfrac{x}{2}} \right){\text{ }} \to {\text{(4)}} and cosx=12[sin(x2)]2 2[sin(x2)]2=1cosx (5)  \cos x = 1 - 2{\left[ {\sin \left( {\dfrac{x}{2}} \right)} \right]^2} \\\ \Rightarrow 2{\left[ {\sin \left( {\dfrac{x}{2}} \right)} \right]^2} = 1 - \cos x{\text{ }} \to {\text{(5)}} \\\
By substituting the equations (4) and (5) in equation (3), we get

y=[2sin(x2)cos(x2)2[sin(x2)]2] y=[cos(x2)sin(x2)] y=cot(x2) (6)  \Rightarrow y = \left[ {\dfrac{{ - 2\sin \left( {\dfrac{x}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)}}{{2{{\left[ {\sin \left( {\dfrac{x}{2}} \right)} \right]}^2}}}} \right] \\\ \Rightarrow y = \left[ {\dfrac{{ - \cos \left( {\dfrac{x}{2}} \right)}}{{\sin \left( {\dfrac{x}{2}} \right)}}} \right] \\\ \Rightarrow y = - \cot \left( {\dfrac{x}{2}} \right){\text{ }} \to {\text{(6)}} \\\

Also, cot(πθ)=cotθ cot(πx2)=cot(x2) (7)  \cot \left( {\pi - \theta } \right) = - \cot \theta \\\ \Rightarrow \cot \left( {\pi - \dfrac{x}{2}} \right) = - \cot \left( {\dfrac{x}{2}} \right){\text{ }} \to {\text{(7)}} \\\
Using the equation (7) in equation (6), we get
y=cot(πx2) (8)\Rightarrow y = \cot \left( {\pi - \dfrac{x}{2}} \right){\text{ }} \to {\text{(8)}}
According to the equations (1) and (8), we get
y=1sinx+1+sinx1sinx1+sinx=cot(πx2) (9)y = \dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }} = \cot \left( {\pi - \dfrac{x}{2}} \right){\text{ }} \to {\text{(9)}}
Using equation (9) in order to obtain the value of the expression needed, we get
cot1[1sinx+1+sinx1sinx1+sinx]=cot1[cot(πx2)]{\cot ^{ - 1}}\left[ {\dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}} \right] = {\cot ^{ - 1}}\left[ {\cot \left( {\pi - \dfrac{x}{2}} \right)} \right]
By using the formula i.e., cot1[cotθ]=θ{\cot ^{ - 1}}\left[ {\cot \theta } \right] = \theta , above equation becomes
cot1[1sinx+1+sinx1sinx1+sinx]=(πx2){\cot ^{ - 1}}\left[ {\dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}} \right] = \left( {\pi - \dfrac{x}{2}} \right)
Hence, option D is correct.

Note: In this particular problem, we have used the formula sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta and replaced angle θ\theta with x2\dfrac{x}{2} in order to get sinx=2sin(x2)cos(x2)\sin x = 2\sin \left( {\dfrac{x}{2}} \right)\cos \left( {\dfrac{x}{2}} \right) and also we have use the formula cos2θ=12[sinθ]2\cos 2\theta = 1 - 2{\left[ {\sin \theta } \right]^2} and replaced angle θ\theta with x2\dfrac{x}{2} in order to get cosx=12[sin(x2)]2\cos x = 1 - 2{\left[ {\sin \left( {\dfrac{x}{2}} \right)} \right]^2}.