Solveeit Logo

Question

Question: Find the value of integration \(\int\limits_0^{\frac{\pi }{2}} {\sin x\cos xdx} .\)...

Find the value of integration 0π2sinxcosxdx.\int\limits_0^{\frac{\pi }{2}} {\sin x\cos xdx} .

Explanation

Solution

Hint: Use formula sin2x=2sinxcosx.\sin 2x = 2\sin x\cos x.
Let the value of integration be I.I.
I=0π2sinxcosxdx,\Rightarrow I = \int\limits_0^{\frac{\pi }{2}} {\sin x\cos xdx} ,
Dividing and multiplying by 22 on right hand side, we’ll get:
I=120π22sinxcosxdx,\Rightarrow I = \frac{1}{2}\int\limits_0^{\frac{\pi }{2}} {2\sin x\cos xdx} ,
We know that 2sinxcosx=sin2x2\sin x\cos x = \sin 2x, using this we’ll get:
I=120π2sin2xdx,\Rightarrow I = \frac{1}{2}\int\limits_0^{\frac{\pi }{2}} {\sin 2xdx} ,
And we also know that, sin2xdx=cos2x2+C\int {\sin 2xdx = } - \frac{{\cos 2x}}{2} + C, using this we will get:

I=12[cos2x2]0π2, I=14[cos2x]0π2  \Rightarrow I = \frac{1}{2}\left[ { - \frac{{\cos 2x}}{2}} \right]_0^{\frac{\pi }{2}}, \\\ \Rightarrow I = - \frac{1}{4}\left[ {\cos 2x} \right]_0^{\frac{\pi }{2}} \\\

Putting limit of integration, we’ll get:
I=14[cosπcos0], I=14(11)=14×(2), I=12.  \Rightarrow I = - \frac{1}{4}\left[ {\cos \pi - \cos 0} \right], \\\ \Rightarrow I = - \frac{1}{4}( - 1 - 1) = - \frac{1}{4} \times ( - 2), \\\ \Rightarrow I = \frac{1}{2}. \\\
Thus, the value of integration is 12.\frac{1}{2}.
Note: We will ignore the constant of integration while putting the limit because it is a definite integration.