Question
Question: Find the value of integration \(\int\limits_0^{\frac{\pi }{2}} {\sin x\cos xdx} .\)...
Find the value of integration 0∫2πsinxcosxdx.
Explanation
Solution
Hint: Use formula sin2x=2sinxcosx.
Let the value of integration be I.
⇒I=0∫2πsinxcosxdx,
Dividing and multiplying by 2 on right hand side, we’ll get:
⇒I=210∫2π2sinxcosxdx,
We know that 2sinxcosx=sin2x, using this we’ll get:
⇒I=210∫2πsin2xdx,
And we also know that, ∫sin2xdx=−2cos2x+C, using this we will get:
Putting limit of integration, we’ll get:
⇒I=−41[cosπ−cos0], ⇒I=−41(−1−1)=−41×(−2), ⇒I=21.
Thus, the value of integration is 21.
Note: We will ignore the constant of integration while putting the limit because it is a definite integration.