Solveeit Logo

Question

Question: Find the value of integral \[\int\limits_{0}^{\dfrac{\pi }{2}}{\sin x.\sin 2x.\sin 3x.\sin 4x.dx} \]...

Find the value of integral 0π2sinx.sin2x.sin3x.sin4x.dx\int\limits_{0}^{\dfrac{\pi }{2}}{\sin x.\sin 2x.\sin 3x.\sin 4x.dx}
(a) π4\dfrac{\pi }{4}
(b) π8\dfrac{\pi }{8}
(c) π16\dfrac{\pi }{16}
(d) π32\dfrac{\pi }{32}

Explanation

Solution

We solve this problem by using the simple formulas of trigonometry.
First, we regroup the terms in the integral in such a way that the odd times of x'x' at one side and the even times of x'x' at one side.
Then we use the formula of composite angles of sine ratio that is
2sinAsinB=cos(AB)cos(A+B)2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)
Also we use the formula of composite angle of cosine ratio that is
2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)
We also have the formula of half angle for cosine ratio that is
cos2θ=1+cos2θ2{{\cos }^{2}}\theta =\dfrac{1+\cos 2\theta }{2}
After applying the required formulas we get the integral as the individual terms of cosine ratio then we use the direct formula of definite integration that is

& 0,\text{ when }n\text{ is even} \\\ & \dfrac{1}{n}\sin \left( \dfrac{n\pi }{2} \right),\text{ when }n\text{ is odd} \\\ \end{aligned} \right.$$ **Complete step-by-step solution** We are given that the integral as $$\int\limits_{0}^{\dfrac{\pi }{2}}{\sin x.\sin 2x.\sin 3x.\sin 4x.dx}$$ Let us assume that the given integral as $$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\sin x.\sin 2x.\sin 3x.\sin 4x.dx}$$ Now, let us regroup the terms in such a way that the odd times of $$'x'$$ at one side and the even times of $$'x'$$ at one side then we get $$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \sin x.\sin 3x \right)\left( \sin 2x.\sin 4x \right)dx}$$ We know that the formula of composite angle of sine ratio that is $$2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)$$ By using this formula to above equation we get $$\begin{aligned} & \Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{\cos \left( 3x-x \right)-\cos \left( 3x+x \right)}{2} \right)\left( \dfrac{\cos \left( 4x-2x \right)-\cos \left( 4x+2x \right)}{2} \right)dx} \\\ & \Rightarrow I=\dfrac{1}{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \cos 2x-\cos 4x \right)\left( \cos 2x-\cos 6x \right)dx} \\\ \end{aligned}$$ Now, by multiplying the terms in above equation we get $$\Rightarrow I=\dfrac{1}{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\left( {{\cos }^{2}}2x-\cos 2x\cos 6x-\cos 2x\cos 4x+\cos 4x\cos 6x \right)dx}.....equation(i)$$ We know that the half angle formula of cosine ratio that is $${{\cos }^{2}}\theta =\dfrac{1+\cos 2\theta }{2}$$ We also know that the composite angle formula for the cosine ratio that is $$2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)$$ Now, by using the above two formulas to equation (i) we get $$\begin{aligned} & \Rightarrow I=\dfrac{1}{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{1+\cos 4x}{2}-\dfrac{\cos 8x}{2}-\dfrac{\cos 4x}{2}-\dfrac{\cos 6x}{2}-\dfrac{\cos 2x}{2}+\dfrac{\cos 10x}{2}+\dfrac{\cos 2x}{2} \right)dx} \\\ & \Rightarrow I=\dfrac{1}{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{1}{2}+\dfrac{\cos 4x}{2}-\dfrac{\cos 8x}{2}-\dfrac{\cos 4x}{2}-\dfrac{\cos 6x}{2}+\dfrac{\cos 10x}{2} \right)dx} \\\ \end{aligned}$$ Now, let us separate the integral for each and every term in the above equation we get $$\Rightarrow I=\dfrac{1}{4}\left[ \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{1}{2}.dx}+\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos 4x}{2}.dx}-\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 8x.dx}-\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 4x.dx}-\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 6x.dx}+\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 10x.dx} \right]$$ We know that the standard result of definite integrals that is $$\int\limits_{0}^{\dfrac{\pi }{2}}{\cos nx.dx}=\left\\{ \begin{aligned} & 0,\text{ when }n\text{ is even} \\\ & \dfrac{1}{n}\sin \left( \dfrac{n\pi }{2} \right),\text{ when }n\text{ is odd} \\\ \end{aligned} \right.$$ $$\int\limits_{a}^{b}{dx}=b-a$$ By using this formula to above equation we get $$\begin{aligned} & \Rightarrow I=\dfrac{1}{4}\left[ \dfrac{1}{2}\left( \dfrac{\pi }{2}-0 \right)+\left( \dfrac{1}{2}\times 0 \right)-\left( \dfrac{1}{2}\times 0 \right)-\left( \dfrac{1}{2}\times 0 \right)-\left( \dfrac{1}{2}\times 0 \right)+\left( \dfrac{1}{2}\times 0 \right) \right] \\\ & \Rightarrow I=\dfrac{\pi }{16} \\\ \end{aligned}$$ Therefore the value of given integral is $$\therefore \int\limits_{0}^{\dfrac{\pi }{2}}{\sin x.\sin 2x.\sin 3x.\sin 4x.dx}=\dfrac{\pi }{16}$$ **So, option (c) is the correct answer.** **Note:** Here we used the direct result for the definite integral that is $$\int\limits_{0}^{\dfrac{\pi }{2}}{\cos nx.dx}=\left\\{ \begin{aligned} & 0,\text{ when }n\text{ is even} \\\ & \dfrac{1}{n}\sin \left( \dfrac{n\pi }{2} \right),\text{ when }n\text{ is odd} \\\ \end{aligned} \right.$$ If we cannot remember this we can prove this by using the integration. Let us assume that $$A=\int\limits_{0}^{\dfrac{\pi }{2}}{\cos nx.dx}$$ We know that the formula for the integration that is $$\int{\cos nx.dx}=\dfrac{1}{n}\sin nx$$ So, by using this formula we get $$\Rightarrow A=\dfrac{1}{n}\left[ \sin nx \right]_{0}^{\dfrac{\pi }{2}}$$ Now, by applying the limits we get $$\begin{aligned} & \Rightarrow A=\dfrac{1}{n}\sin \dfrac{n\pi }{2}-\dfrac{1}{n}\sin 0 \\\ & \Rightarrow A=\dfrac{1}{n}\sin \dfrac{n\pi }{2} \\\ \end{aligned}$$ Here we can see if $$'n'$$ is even we can say that the value of $$\dfrac{n\pi }{2}$$ will be the multiple of $$\pi $$ We know that the sine ratio for integral multiples of $$\pi $$ will be 0 that is $$\Rightarrow \sin k\pi =0$$ where, $$'k'$$ is an integer. But we cannot say anything when $$'n'$$ is odd. Therefore we can write that $$\int\limits_{0}^{\dfrac{\pi }{2}}{\cos nx.dx}=\left\\{ \begin{aligned} & 0,\text{ when }n\text{ is even} \\\ & \dfrac{1}{n}\sin \left( \dfrac{n\pi }{2} \right),\text{ when }n\text{ is odd} \\\ \end{aligned} \right.$$ We can directly use this in the problems as we did in this question.