Solveeit Logo

Question

Question: Find the value of integral \[\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{3\sqrt{\cos \theta }}{{{\lef...

Find the value of integral
0π23cosθ(cosθ+sinθ)5dθ\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{3\sqrt{\cos \theta }}{{{\left( \sqrt{\cos \theta }+\sqrt{\sin \theta } \right)}^{5}}}d\theta }

Explanation

Solution

To solve this question, we will first of all use the definite integral formula stated as
0af(x)dx=0af(ax)dx\int\limits_{0}^{a}{f\left( x \right)}dx=\int\limits_{0}^{a}{f\left( a-x \right)}dx by substituting x=π2x=\dfrac{\pi }{2}
Then we will add the obtained term to original term to obtain 2I=0π2cosθ+sinθ(cosθ+sinθ)5dθ2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cos \theta }+\sqrt{\sin \theta }}{{{\left( \sqrt{\cos \theta }+\sqrt{\sin \theta } \right)}^{5}}}d\theta }. After cancelling one power of cosθ+sinθ\sqrt{\cos \theta }+\sqrt{\sin \theta } we will make substitution as sinθcosθ=tanθ and 1cosθ=secθ\dfrac{\sqrt{\sin \theta }}{\sqrt{\cos \theta }}=\tan \theta \text{ and }\dfrac{1}{\cos \theta }=\sec \theta to get final result. Also, we will use 1xkdx=xk+1k+1\int{\dfrac{1}{{{x}^{k}}}dx=\dfrac{{{x}^{-k+1}}}{-k+1}}

Complete step-by-step answer:
Given, I=0π23cosθ(cosθ+sinθ)5dθ . . . . . . . . . . . . (i)I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{3\sqrt{\cos \theta }}{{{\left( \sqrt{\cos \theta }+\sqrt{\sin \theta } \right)}^{5}}}d\theta }\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}
We have a property of definite integral given as below:
0af(x)dx=0af(ax)dx\int\limits_{0}^{a}{f\left( x \right)}dx=\int\limits_{0}^{a}{f\left( a-x \right)}dx
Using this property in equation (i) by taking a=π2a=\dfrac{\pi }{2} we get
I=0π23cos(π2θ)(cos(π2θ)+sin(π2θ))5dθI=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{3\sqrt{\cos \left( \dfrac{\pi }{2}-\theta \right)}}{{{\left( \sqrt{\cos \left( \dfrac{\pi }{2}-\theta \right)}+\sqrt{\sin \left( \dfrac{\pi }{2}-\theta \right)} \right)}^{5}}}d\theta }
Now, the value of cos(π2θ)=sinθ\cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta and the value of sin(π2θ)=cosθ\sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta
Using this in above obtained term we get:
I=0π23sinθ(sinθ+cosθ)5dθ . . . . . . . . . . . . (ii)I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{3\sqrt{\sin \theta }}{{{\left( \sqrt{\sin \theta }+\sqrt{\cos \theta } \right)}^{5}}}d\theta }\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}
Now adding equation (i) and equation (ii) we get:

& 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{3\sqrt{\cos \theta }}{{{\left( \sqrt{\sin \theta }+\sqrt{\cos \theta } \right)}^{5}}}d\theta }+\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{3\sqrt{\sin \theta }}{{{\left( \sqrt{\sin \theta }+\sqrt{\cos \theta } \right)}^{5}}}d\theta } \\\ & 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{3\left( \sqrt{\cos \theta }+\sqrt{\sin \theta } \right)}{{{\left( \sqrt{\sin \theta }+\sqrt{\cos \theta } \right)}^{5}}}d\theta } \\\ \end{aligned}$$ Cancelling $\sqrt{\cos \theta }+\sqrt{\sin \theta }$ from numerator and denominator we get: $$2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{3d\theta }{{{\left( \sqrt{\sin \theta }+\sqrt{\cos \theta } \right)}^{4}}}}$$ Now, dividing by ${{\cos }^{2}}\theta $ both numerator and denominator we get: $$2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\dfrac{3}{{{\cos }^{2}}\theta }d\theta }{\dfrac{{{\left( \sqrt{\sin \theta }+\sqrt{\cos \theta } \right)}^{4}}}{{{\cos }^{2}}\theta }}}$$ Using the trigonometric identity $\dfrac{1}{{{\cos }^{2}}\theta }={{\sec }^{2}}\theta \text{ and }\dfrac{\sin \theta }{\cos \theta }=\tan \theta $ in above we have: $$2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{3{{\sec }^{2}}\theta d\theta }{{{\left( \sqrt{\tan \theta }+1 \right)}^{4}}}}$$ Let us assume $\tan \theta ={{t}^{2}}\Rightarrow \sqrt{\tan \theta }=t$ then differentiating both sides with respect to t and using $\dfrac{d}{dx}\tan x={{\sec }^{2}}x$ we get: $${{\sec }^{2}}\theta d\theta =2tdt$$ When $$\theta =0\Rightarrow \tan \theta =0\Rightarrow \tan \theta ={{t}^{2}}=0\Rightarrow t=0$$ And when $$\theta =\dfrac{\pi }{2}\Rightarrow \tan \dfrac{\pi }{2}={{t}^{2}}$$ Now, value of $$\tan \dfrac{\pi }{2}=\infty \Rightarrow {{t}^{2}}=\infty \Rightarrow t=\infty $$ Applying this substitution in above value of 2I $$2I=3\int\limits_{0}^{\infty }{\dfrac{2tdt}{{{\left( 1+t \right)}^{4}}}}$$ Cancelling 2 on both sides we get: And adding and subtracting 1 on numerator to make integral solvable we get: $$\begin{aligned} & I=3\int\limits_{0}^{\infty }{\dfrac{\left( t+1-1 \right)dt}{{{\left( 1+t \right)}^{4}}}} \\\ & I=3\int\limits_{0}^{\infty }{\left( \dfrac{1+t}{{{\left( 1+t \right)}^{4}}}-\dfrac{1}{{{\left( 1+t \right)}^{4}}} \right)}dt \\\ & I=3\int\limits_{0}^{\infty }{\left( \dfrac{1}{{{\left( 1+t \right)}^{3}}}dt-\int\limits_{0}^{\infty }{\dfrac{1}{{{\left( 1+t \right)}^{4}}}dt} \right)} \\\ \end{aligned}$$ We will now use integration formula: $$\int{\dfrac{1}{{{x}^{k}}}dx=\dfrac{{{x}^{-k+1}}}{-k+1}}$$ Using this in both terms of above separately to integrate we get: Let $$P=3\int\limits_{0}^{\infty }{\dfrac{1}{{{\left( 1+t \right)}^{3}}}}dt\text{ and }Q=-3\int\limits_{0}^{\infty }{\dfrac{1}{{{\left( 1+t \right)}^{4}}}}dt$$ Solving P and Q using above formula of integration we get: $$P=3\left( \dfrac{+1\left( -1 \right)}{2{{\left( 1+t \right)}^{+2}}} \right)_{0}^{\infty }$$ Applying upper and lower limit of integration we get: $$\begin{aligned} & P=3\left( \dfrac{-1}{\infty }-\dfrac{-1}{2\left( 1+0 \right)} \right) \\\ & \Rightarrow 3\left( 0+\dfrac{1}{2\cdot 1} \right) \\\ & \Rightarrow 3\left( 0+\dfrac{1}{2} \right) \\\ & \Rightarrow 3\left( \dfrac{1}{2} \right)=+\dfrac{3}{2} \\\ \end{aligned}$$ And solving Q similarly, we get: $$\begin{aligned} & Q=-3\int\limits_{0}^{\infty }{\dfrac{1}{{{\left( 1+t \right)}^{4}}}}dt \\\ & \Rightarrow -3\left( \dfrac{-1}{3{{\left( 1+t \right)}^{3}}} \right)_{0}^{\infty } \\\ & \Rightarrow +3\left( \dfrac{1}{3{{\left( 1+t \right)}^{3}}} \right)_{0}^{\infty } \\\ & \Rightarrow 3\left( \dfrac{1}{\infty }-\dfrac{1}{3\left( 1+0 \right)} \right) \\\ & \Rightarrow 3\left( 0-\dfrac{1}{3} \right) \\\ & \Rightarrow -1 \\\ \end{aligned}$$ Substitute values of P and Q as obtained in I we get: $$I=\dfrac{+3}{2}+\left( -1 \right)=\dfrac{+3+\left( -2 \right)}{2}=+\dfrac{1}{2}$$ Hence, the value of integral $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cos \theta }}{{{\left( \sqrt{\cos \theta }+\sqrt{\sin \theta } \right)}^{5}}}d\theta }=\dfrac{1}{2}=\dfrac{1}{2}$ **Note:** The possibility of mistake in this question can be at the point where $\tan \theta $ is used as $\dfrac{\sin \theta }{\cos \theta }$ We had $$2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{3{{\sec }^{2}}\theta }{\dfrac{{{\left( \sqrt{\sin \theta }+\sqrt{\cos \theta } \right)}^{4}}}{{{\cos }^{2}}\theta }}}$$ Now, as we have ${{\cos }^{2}}\theta $ in the denominator part so we will observe how we actually took it inside the root. We know, $\sqrt{{{\cos }^{2}}\theta }=\cos \theta $ Observe the part ${{\left( \sqrt{\sin \theta }+\sqrt{\cos \theta } \right)}^{4}}$ When any term comes out from this bracket then it will be of the form ${{\left( {} \right)}^{4}}$ that is some power of 4. Therefore, when we take any term inside of this bracket then it should be of the form ${{\left( {} \right)}^{\dfrac{1}{4}}}$ that is of power $\dfrac{1}{4}$ So, when we took $\dfrac{1}{{{\cos }^{2}}\theta }$ inside of ${{\left( \sqrt{\sin \theta }+\sqrt{\cos \theta } \right)}^{4}}$ then it becomes of the form $$\dfrac{1}{{{\left( {{\cos }^{2}}\theta \right)}^{\dfrac{1}{4}}}}=\dfrac{1}{{{\cos }^{\dfrac{1}{2}}}\theta }=\dfrac{1}{\cos \theta }$$ $$2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{3{{\sec }^{2}}\theta }{{{\left( \dfrac{\sqrt{\sin \theta }}{\sqrt{\cos \theta }}+\dfrac{\sqrt{\cos \theta }}{\sqrt{\cos \theta }} \right)}^{4}}}}d\theta \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{3{{\sec }^{2}}\theta }{{{\left( \sqrt{\tan \theta }+1 \right)}^{4}}}}d\theta $$ is achieved.