Solveeit Logo

Question

Question: Find the value of \[\int {(x{x^3}{x^5}{x^7}......} \]to n terms\[)dx\]= (a) \[{\left( {\dfrac{{{x^...

Find the value of (xx3x5x7......\int {(x{x^3}{x^5}{x^7}......} to n terms)dx)dx=
(a) (xn+1n+1)2+c{\left( {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right)^2} + c
(b) x2n+12n+1+c\dfrac{{{x^{2n + 1}}}}{{2n + 1}} + c
(c) xn2+1n2+1+c\dfrac{{{x^{{n^2} + 1}}}}{{{n^2} + 1}} + c
(d) xn(n+1)2+c\dfrac{{{x^{n(n + 1)}}}}{2} + c

Explanation

Solution

Here, we are going to use the properties of exponential powers. Also we can see given power values are in A.P form using the formula of sum n terms of A.P.

Complete step-by-step answer:
Given, (xx3x5x7......to n terms)dx\int {(x{x^3}{x^5}{x^7}......} to{\text{ }}n{\text{ }}terms)dx
x1+3+5+7......nthdx\Rightarrow \int {{x^{1 + 3 + 5 + 7......nth}}dx}
Here, we can see that 1,3,7,……n are in an A.P, since the common difference is constant and equal to 2.
xn2(2a+(n1)d)dx\Rightarrow \int {{x^{\dfrac{n}{2}(2a + (n - 1)d)}}dx}(using the formula for sum of n terms given by n2(2a+(n1)d)\dfrac{n}{2}\left( {2a + (n - 1)d} \right))
Here, we can see that a=1,d=2a = 1,d = 2
xn2(2×1+(n1)2)dx\Rightarrow \int {{x^{\dfrac{n}{2}(2 \times 1 + (n - 1)2)}}dx}
xn2(2+2n2)dx\Rightarrow \int {{x^{\dfrac{n}{2}(2 + 2n - 2)}}dx}
xn2dx\Rightarrow \int {{x^{{n^2}}}dx}(using the rule which is given by xndx=xn+1n+1+c\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c)
xn2+1n2+1+c\Rightarrow \dfrac{{{x^{{n^2} + 1}}}}{{{n^2} + 1}} + c
Therefore, option (c) xn2+1n2+1+c\dfrac{{{x^{{n^2} + 1}}}}{{{n^2} + 1}} + c is the required solution

Note: Since, the exponential power had the sum of the A.P term wise. Therefore, we could use the formula for an A.P in general.