Solveeit Logo

Question

Question: Find the value of \[\int {x{{\tan }^2}xdx} \]....

Find the value of xtan2xdx\int {x{{\tan }^2}xdx} .

Explanation

Solution

Here, we will first rewrite the integrand of the given integral function using a suitable trigonometric identity. We will then apply the integration by parts formula to simplify the integrand. Then we will use the suitable integration formula to integrate the given function.

Formula Used:
We will use the following formulas:

  1. Trigonometric Identity: 1+tan2θ=sec2θ1 + {\tan ^2}\theta = {\sec ^2}\theta
  2. Integration by Parts: uvdx=uvvdu\int {uvdx = uv - \int {vdu} }
  3. Derivative Formula: ddx(C)=1\dfrac{d}{{dx}}\left( C \right) = 1
  4. Integral Formula: sec2xdx=tanx\int {{{\sec }^2}xdx = \tan x} , xndx=xn+1n+1\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} and sinxcosxdx=ln(cosx)+C\int {\dfrac{{\sin x}}{{\cos x}}dx = - \ln \left( {\cos x} \right) + C}

Complete step by step solution:
We are given an Integral function xtan2xdx\int {x{{\tan }^2}xdx} .
We know that 1+tan2θ=sec2θ1 + {\tan ^2}\theta = {\sec ^2}\theta , so we can write
tan2θ=sec2θ1{\tan ^2}\theta = {\sec ^2}\theta - 1
Substituting this value in the given function, we get
xtan2xdx=x(sec2x1)dx\Rightarrow \int {x{{\tan }^2}xdx} = \int {x\left( {{{\sec }^2}x - 1} \right)dx}.
Now, by multiplying the terms in the integrand, we get
xtan2xdx=(xsec2xx)dx\Rightarrow \int {x{{\tan }^2}xdx} = \int {\left( {x{{\sec }^2}x - x} \right)dx}
By segregating the integrand in the integral function, we get
xtan2xdx=xsec2xdxxdx\Rightarrow \int {x{{\tan }^2}xdx} = \int {x{{\sec }^2}xdx - \int {xdx} }
Now, by using Integration by Parts, uvdx=uvvdu\int {uvdx = uv - \int {vdu} } , for the first Integral function, we get u=xu = x according to ILATE rule and v=sec2xv = {\sec ^2}x .
Now, we will differentiate the variable uu, so we get
du=dxdu = dx…………………………….(1)\left( 1 \right)
Now, we will integrate the variable vv using the formula sec2xdx=tanx\int {{{\sec }^2}xdx = \tan x} , so we get
sec2xdx=tanx\int {{{\sec }^2}xdx = \tan x} …………………………………………(2)\left( 2 \right)
Now, by substituting equation(1)\left( 1 \right) and (2)\left( 2 \right) in the integration by parts formula, we get
xsec2xdx=xtanxtanxdx\int {x{{\sec }^2}xdx = x\tan x - \int {\tan xdx} } …………………………………………..(3)\left( 3 \right)
Now, by substituting equation (3)\left( 3 \right) in the integral function, we get
xtan2xdx=xtanxtanxdxxdx\Rightarrow \int {x{{\tan }^2}xdx} = x\tan x - \int {\tan xdx - \int {xdx} }
xtan2xdx=xtanxsinxcosxdxxdx\Rightarrow \int {x{{\tan }^2}xdx} = x\tan x - \int {\dfrac{{\sin x}}{{\cos x}}dx - \int {xdx} }
Now, we will integrate the function by using the integral formula xndx=xn+1n+1\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} and sinxcosxdx=ln(cosx)+C\int {\dfrac{{\sin x}}{{\cos x}}dx = - \ln \left( {\cos x} \right) + C} , we get
xtan2xdx=xtanx[ln(cosx)]x22+C\Rightarrow \int {x{{\tan }^2}xdx} = x\tan x - \left[ { - \ln \left( {\cos x} \right)} \right] - \dfrac{{{x^2}}}{2} + C
xtan2xdx=xtanx[ln(cos1x)]x22+C\Rightarrow \int {x{{\tan }^2}xdx} = x\tan x - \left[ {\ln \left( {{{\cos }^{ - 1}}x} \right)} \right] - \dfrac{{{x^2}}}{2} + C
Using the Inverse Trigonometric ratio 1cosx=secx\dfrac{1}{{\cos x}} = \sec x, we get
xtan2xdx=xtanx[ln(secx)]x22+C\Rightarrow \int {x{{\tan }^2}xdx} = x\tan x - \left[ {\ln \left( {\sec x} \right)} \right] - \dfrac{{{x^2}}}{2} + C

Therefore, the value of xtan2xdx\int {x{{\tan }^2}xdx} is xtanx[ln(secx)]x22+Cx\tan x - \left[ {\ln \left( {\sec x} \right)} \right] - \dfrac{{{x^2}}}{2} + C.

Note:
We know that Integration is the process of adding small parts to find the whole parts. While performing the Integration by Parts, the first function is selected according to the ILATE rule where Inverse Trigonometric function, followed by Logarithmic function, Arithmetic Function, Trigonometric Function and at last Exponential Function. Integration by Parts is applicable only when the integrand is a product of two Functions.