Solveeit Logo

Question

Question: Find the value of \(\int {x\log (1 - {x^2})} dx\)....

Find the value of xlog(1x2)dx\int {x\log (1 - {x^2})} dx.

Explanation

Solution

The problem can be solved with the Substitution method. We have to substitute (1x2)=t(1 - {x^2}) = t. Further, the integration of logx\log x is xlogxx+cx\log x - x + c , where c is the constant of integration.

Complete step-by-step answer:
Substitute t at the place of (1x2)(1 - {x^2}) in xlog(1x2)dx\int {x\log (1 - {x^2})} dx
If, (1x2)=t(1 - {x^2}) = t
Then, differentiating both sides with respect to tt, we get
d(1x2)dt=dt 2xdx=dt xdx=dt2  \Rightarrow \dfrac{{d(1 - {x^2})}}{{dt}} = dt \\\ \Rightarrow - 2xdx = dt \\\ \Rightarrow xdx = - \dfrac{{dt}}{2} \\\
Putting above value in xlog(1x2)dx\int {x\log (1 - {x^2})} dx, we get
logtdt2 12logtdt  \Rightarrow \int { - \log t\dfrac{{dt}}{2}} \\\ \Rightarrow - \dfrac{1}{2}\int {\log tdt} \\\
Further we know logt=tlogtt+c\int {\log t = t\log t - t + c} where c is the constant of integration.
12logtdt=12(tlogtt+c)\Rightarrow - \dfrac{1}{2}\int {\log tdt} = - \dfrac{1}{2}(t\log t - t + c)
Putting the value t=(1x2)t = (1 - {x^2}) in above equation, we get
12(tlogtt+c) 12((1x2)log(1x2)(1x2)+c)  \Rightarrow - \dfrac{1}{2}(t\log t - t + c) \\\ \Rightarrow - \dfrac{1}{2}((1 - {x^2})\log (1 - {x^2}) - (1 - {x^2}) + c) \\\

Note: Additional Information, logxdx\int {\log xdx} can be calculated by the Integration using the parts.
As, We know that f(x)g(x)dx=f(x)g(x)dx(f(x)g(x)dx)dx\int {f(x)g(x)dx = f(x)\int {g(x)} } dx - \int {\left( {f'(x} \right)} \int {g\left( x \right)} dx)dx
Here, f(x)=logxf(x) = \log x and g(x)=1g(x) = 1
(logx)1dx=logx1.dx(d(logx)dx1.dx)dx =(logx)x1x.x.dx =xlogx1.dx =xlogxx+c  \Rightarrow \int {(\log x)} 1dx = \log x\int {1.dx - \int {(\dfrac{{d(\log x)}}{{dx}}} } \int {1.dx)dx} \\\ = (\log x)x - \int {\dfrac{1}{x}} .x.dx \\\ = x\log x - \int {1.dx} \\\ = x\log x - x + c \\\
where c is the constant of integration.