Question
Question: Find the value of \(\int {{{\tan }^{ - 1}}\left( {\sec x + \tan x} \right)dx} \)....
Find the value of ∫tan−1(secx+tanx)dx.
Explanation
Solution
Hint: Convert (secx+tanx) in terms of tanx and then integrate.
Let
I=∫tan−1(secx+tanx)dx I=∫tan−1(cosx1+cosxsinx)dx I=∫tan−1(cosx1+sinx)dxConverting into their half-angles then we have
I=∫tan−1cos22x−sin22xsin22x+cos22x+2sin2xcos2xdx I=∫tan−1(cos2x−sin2x)(cos2x+sin2x)(cos2x+sin2x)2
Cancelling common terms in numerator and denominator, we have
I=∫tan−1cos2x−sin2xcos2x+sin2xdx
I=∫tan−11−cos2xsin2x1+cos2xsin2xdx
I=∫tan−11−tan2x1+tan2xdx
Since 1−tan2x1+tan2x=tan(4π+2x) we have
I=∫tan−1(tan(4π+2x))dx I=∫(4π+2x)dx I=4πx+41x2+cThus, ∫tan−1(secx+tanx)dx=4πx+41x2+c.
Note: Do not forget to add integration constant after doing integration.