Solveeit Logo

Question

Question: Find the value of \(\int {{{\tan }^{ - 1}}\left( {\sec x + \tan x} \right)dx} \)....

Find the value of tan1(secx+tanx)dx\int {{{\tan }^{ - 1}}\left( {\sec x + \tan x} \right)dx} .

Explanation

Solution

Hint: Convert (secx+tanx)\left( {\sec x + \tan x} \right) in terms of tanx\tan x and then integrate.

Let

I=tan1(secx+tanx)dx  I=tan1(1cosx+sinxcosx)dx   I=tan1(1+sinxcosx)dx I = \int {{{\tan }^{ - 1}}\left( {\sec x + \tan x} \right)dx} \\\ \\\ I = \int {\tan ^{ - 1}}\left( {\dfrac{1}{{\cos x}} + \dfrac{{\sin x}}{{\cos x}}} \right)dx \\\ \\\ \\\ I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{1 + \sin x}}{{\cos x}}} \right)dx} \\\

Converting into their half-angles then we have
I=tan1(sin2x2+cos2x2+2sinx2cosx2cos2x2sin2x2)dx  I=tan1((cosx2+sinx2)2(cosx2sinx2)(cosx2+sinx2))  I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{{{\sin }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2} + 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}} \right)} dx \\\ \\\ I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}^2}}}{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}} \right)} \\\
Cancelling common terms in numerator and denominator, we have
I=tan1(cosx2+sinx2cosx2sinx2)dxI = \int {{{\tan }^{ - 1}}} \left( {\dfrac{{\cos \dfrac{x}{2} + \sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2} - \sin \dfrac{x}{2}}}} \right)dx

I=tan1(1+sinx2cosx21sinx2cosx2)dxI = \int {{{\tan }^{ - 1}}\left( {\dfrac{{1 + \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}}{{1 - \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}}} \right)} dx
I=tan1(1+tanx21tanx2)dxI = \int {{{\tan }^{ - 1}}\left( {\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}}} \right)} dx

Since 1+tanx21tanx2=tan(π4+x2)\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}} = \tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right) we have

I=tan1(tan(π4+x2))dx  I=(π4+x2)dx  I=π4x+14x2+c I = \int {{{\tan }^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)} \right)dx} \\\ \\\ I = \int {\left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)dx} \\\ \\\ I = \dfrac{\pi }{4}x + \dfrac{1}{4}{x^2} + c \\\

Thus, tan1(secx+tanx)dx=π4x+14x2+c\int {{{\tan }^{ - 1}}\left( {\sec x + \tan x} \right)dx} = \dfrac{\pi }{4}x + \dfrac{1}{4}{x^2} + c.

Note: Do not forget to add integration constant after doing integration.