Solveeit Logo

Question

Question: Find the value of \(\int {\sin 3x.\cos 4x} dx\)....

Find the value of sin3x.cos4xdx\int {\sin 3x.\cos 4x} dx.

Explanation

Solution

This is a question of indefinite integration. Here we have to integrate sin3xcos4x\sin 3x\cos 4x with respect to dxdx. Our basic aim is to write the term sin3xcos4x\sin 3x\cos 4x as the sum of sinnx\sin nx and cosnx\cos nx, so that its integration becomes simple. We have studied a trigonometric formula sin(A+B)+sin(AB)=2sinAcosB\sin \left( {A + B} \right) + \sin \left( {A - B} \right) = 2\sin A\cos B. Using this formula convert sin3xcos4x\sin 3x\cos 4x into addition of two terms then integrate the individual terms with respect to dxdx and then add them to get the required result.

Complete step-by-step answer:
Given: find the value of sin3x.cos4xdx\int {\sin 3x.\cos 4x} dx.
Firstly, we have to convert sin3xcos4x\sin 3x\cos 4x as the addition of two terms.
We have studied a famous trigonometric formula sin(A+B)+sin(AB)=2sinAcosB\sin \left( {A + B} \right) + \sin \left( {A - B} \right) = 2\sin A\cos B.
Putting A=3xA = 3x and B=4xB = 4x we get,
2sin3xcos4x=sin(3x+4x)+sin(3x4x) sin3xcos4x=12(sin7x+sin(x))  \Rightarrow 2\sin 3x\cos 4x = \sin \left( {3x + 4x} \right) + \sin \left( {3x - 4x} \right) \\\ \Rightarrow \sin 3x\cos 4x = \dfrac{1}{2}\left( {\sin 7x + \sin \left( { - x} \right)} \right) \\\
We know that sin(θ)=sinθ\sin \left( { - \theta } \right) = - \sin \theta applying this. we get,
sin3xcos4x=12(sin7xsinx) sin3xcos4x=12sin7x12sinx  \Rightarrow \sin 3x\cos 4x = \dfrac{1}{2}\left( {\sin 7x - \sin x} \right) \\\ \Rightarrow \sin 3x\cos 4x = \dfrac{1}{2}\sin 7x - \dfrac{1}{2}\sin x \\\
Now, sin3x.cos4xdx\int {\sin 3x.\cos 4x} dx can be written as (12sin7x12sinx)dx\int {\left( {\dfrac{1}{2}\sin 7x - \dfrac{1}{2}\sin x} \right)dx} .
=12sin7xdx12sinxdx= \int {\dfrac{1}{2}\sin 7xdx} - \int {\dfrac{1}{2}\sin xdx}
Since 12\dfrac{1}{2} is a constant term so it can be taken out of both the integration.
=12(sin7xdxsinxdx)= \dfrac{1}{2}\left( {\int {\sin 7xdx} - \int {\sin xdx} } \right)- - - - - - - - - - - - - - - - - - - - - (1)
Now, take 7x=u7x = u then differentiating both side we get,
7dx=du7dx = du
Now, by putting 7x=u7x = u and dx=du7dx = \dfrac{{du}}{7}, we can write sin7xdx\int {\sin 7xdx} as sinu(du7)=17sinudu\int {\sin u\left( {\dfrac{{du}}{7}} \right) = \dfrac{1}{7}\int {\sin udu} } .
We know that integration of sinx\sin x with respect to dxdx gives cosx - \cos x. That is sinxdx=cosx+c\int {\sin xdx = - \cos x} + c.
Now, 17sinudu=17(cosu)+c\dfrac{1}{7}\int {\sin udu = \dfrac{1}{7}\left( { - \cos u} \right)} + c
Putting u=7xu = 7x.
we get the value of sin7xdx\int {\sin 7xdx} is 17cos7x+c\dfrac{{ - 1}}{7}\cos 7x + c.
And the value of sinxdx\int {\sin xdx} is cosx+c - \cos x + c.
Putting these values in equation (1) we get,

=12(sin7xdxsinxdx) =12(17cos7x+ccosx+c) =114(cos7x+7cosx)+c  = \dfrac{1}{2}\left( {\int {\sin 7xdx} - \int {\sin xdx} } \right) \\\ = \dfrac{1}{2}\left( { - \dfrac{1}{7}\cos 7x + c - \cos x + c} \right) \\\ = - \dfrac{1}{{14}}\left( {\cos 7x + 7\cos x} \right) + c \\\

Thus, the required value of sin3x.cos4xdx\int {\sin 3x.\cos 4x} dx is 114(cos7x+7cosx)+c - \dfrac{1}{{14}}\left( {\cos 7x + 7\cos x} \right) + c.

Note:
If the value of this integration is to be calculated over limits them we have to simply put the upper limit in 114(cos7x+7cosx) - \dfrac{1}{{14}}\left( {\cos 7x + 7\cos x} \right)\, and then lower limits and the difference of these two gives the required results.