Solveeit Logo

Question

Question: Find the value of \[\int\limits_{-\dfrac{\pi }{2}}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{2}}x}{1+{{\...

Find the value of
π2π2sin2x1+(2017)xdx\int\limits_{-\dfrac{\pi }{2}}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{2}}x}{1+{{\left( 2017 \right)}^{x}}}}dx

Explanation

Solution

We start solving the problem by using the property aaf(x)dx=0a(f(x)+f(x))dx\int\limits_{-a}^{a}{f(x)dx=}\int\limits_{0}^{a}{\left( f(x)+f(-x) \right)}dx in the given definite integral. We make subsequent calculations required and use the property sin2θ=(1cos2θ)2{{\sin }^{2}}\theta =\dfrac{\left( 1-\cos 2\theta \right)}{2} to proceed further through the problem. We then use the property ba(mf(x)+ng(x))dx=bamf(x)dx+bang(x)dx\int\limits_{b}^{a}{\left( mf(x)+ng(x) \right)dx=}\int\limits_{b}^{a}{mf(x)dx+\int\limits_{b}^{a}{ng(x)dx}} and integrate the functions. We then substitute the limits of the definite integral in the obtained functions to get the required answer.

Complete step-by-step answer:
As mentioned in the question, we have to evaluate the following expression I=π2π2sin2x1+(2017)xdxI=\int\limits_{-\dfrac{\pi }{2}}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{2}}x}{1+{{\left( 2017 \right)}^{x}}}}dx.
Let us assume the value of the given definite integral be I. So, we get I=π2π2sin2x1+(2017)xdxI=\int\limits_{-\dfrac{\pi }{2}}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{2}}x}{1+{{\left( 2017 \right)}^{x}}}}dx.
Using the property of definite integration in the above definite integral, we can write as the following expression
I=π2π2sin2x1+(2017)xdx\Rightarrow I=\int\limits_{-\dfrac{\pi }{2}}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{2}}x}{1+{{\left( 2017 \right)}^{x}}}}dx.
By using the following property of definite integration aaf(x)dx=0a(f(x)+f(x))dx\int\limits_{-a}^{a}{f(x)dx=}\int\limits_{0}^{a}{\left( f(x)+f(-x) \right)}dx.
I=0π2(sin2x1+(2017)x+sin2(x)1+(2017)(x))dx\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{{{\sin }^{2}}x}{1+{{\left( 2017 \right)}^{x}}}+\dfrac{{{\sin }^{2}}\left( -x \right)}{1+{{\left( 2017 \right)}^{\left( -x \right)}}} \right)}dx ---(1).
We know that ax=1ax{{a}^{-x}}=\dfrac{1}{{{a}^{x}}}. We use this result in equation (1).
I=0π2(sin2x1+(2017)x+(sin(x))21+1(2017)x)dx\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{{{\sin }^{2}}x}{1+{{\left( 2017 \right)}^{x}}}+\dfrac{{{\left( -\sin \left( x \right) \right)}^{2}}}{1+\dfrac{1}{{{\left( 2017 \right)}^{x}}}} \right)}dx.
I=0π2(sin2x1+(2017)x+sin2x(2017)x+1(2017)x)dx\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{{{\sin }^{2}}x}{1+{{\left( 2017 \right)}^{x}}}+\dfrac{{{\sin }^{2}}x}{\dfrac{{{\left( 2017 \right)}^{x}}+1}{{{\left( 2017 \right)}^{x}}}} \right)}dx.
I=0π2(sin2x1+(2017)x+(sin2x)×(2017)x1+(2017)x)dx\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{{{\sin }^{2}}x}{1+{{\left( 2017 \right)}^{x}}}+\dfrac{\left( {{\sin }^{2}}x \right)\times {{\left( 2017 \right)}^{x}}}{1+{{\left( 2017 \right)}^{x}}} \right)}dx.
We now take sin2x{{\sin }^{2}}x common in both terms present in integrand.
I=0π2(sin2x)(11+(2017)x+(2017)x1+(2017)x)dx\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( {{\sin }^{2}}x \right)\left( \dfrac{1}{1+{{\left( 2017 \right)}^{x}}}+\dfrac{{{\left( 2017 \right)}^{x}}}{1+{{\left( 2017 \right)}^{x}}} \right)}dx.
I=0π2(sin2x)(1+(2017)x1+(2017)x)dx\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( {{\sin }^{2}}x \right)\left( \dfrac{1+{{\left( 2017 \right)}^{x}}}{1+{{\left( 2017 \right)}^{x}}} \right)}dx.
I=0π2(sin2x)dx\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( {{\sin }^{2}}x \right)}dx.
Now, we will use the relation between cos 2θ2\theta and sin2θ{{\sin }^{2}}\theta as mentioned in the hint above as
sin2θ=(1cos2θ)2{{\sin }^{2}}\theta =\dfrac{\left( 1-\cos 2\theta \right)}{2}.
Hence, now we can simplify the definite integral as
I=0π2(1cos2x2)dx\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{1-\cos 2x}{2} \right)}dx.
Now, we use another property ab(mf(x)+ng(x))dx=abmf(x)dx+abng(x)dx\int\limits_{a}^{b}{\left( mf\left( x \right)+ng\left( x \right) \right)dx=\int\limits_{a}^{b}{mf\left( x \right)dx+\int\limits_{a}^{b}{ng\left( x \right)dx}}}.
I=0π2(12)dx0π2(cos2x2)dx    ...(a)\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{1}{2} \right)}dx-\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{\cos 2x}{2} \right)}dx\ \ \ \ ...(a)
We know that adx=ax+C\int{adx=ax+C} and cosaxdx=sinaxa+C\int{\cos axdx=\dfrac{\sin ax}{a}+C}. We also know that abf(x)dx=[f(x)]ab=f(b)f(a)\int\limits_{a}^{b}{{{f}^{'}}\left( x \right)dx=\left[ f\left( x \right) \right]_{a}^{b}=f\left( b \right)-f\left( a \right)}. We use this results in equation (a).
I=12[x]0π214[sin2x]0π2\Rightarrow I=\dfrac{1}{2}\left[ x \right]_{0}^{\dfrac{\pi }{2}}-\dfrac{1}{4}\left[ \sin 2x \right]_{0}^{\dfrac{\pi }{2}}.
I=12[π20]14[sinπsin0]\Rightarrow I=\dfrac{1}{2}\left[ \dfrac{\pi }{2}-0 \right]-\dfrac{1}{4}\left[ \sin \pi -\sin 0 \right].
I=12[π2]14[00]\Rightarrow I=\dfrac{1}{2}\left[ \dfrac{\pi }{2} \right]-\dfrac{1}{4}\left[ 0-0 \right].
I=π40\Rightarrow I=\dfrac{\pi }{4}-0.
I=π4\Rightarrow I=\dfrac{\pi }{4}.
Hence, the solution of the definite integral is π4\dfrac{\pi }{4}.

Note: We should not make an error while using the properties mentioned in the solution. The property of definite integration that would be useful in solving this question would be
aaf(x)dx=0a(f(x)+f(x))dx\int\limits_{-a}^{a}{f(x)dx=}\int\limits_{0}^{a}{\left( f(x)+f(-x) \right)}dx. This property is usually used when the upper limit and lower limit have the same absolute values with opposite signs. Without the use of these properties the solution would entangle and the student might get a wrong solution.