Solveeit Logo

Question

Question: Find the value of \(\int\limits_{ - 2}^2 {\min \left\\{ {x - \left[ x \right], - x - \left[ { - x} \...

Find the value of \int\limits_{ - 2}^2 {\min \left\\{ {x - \left[ x \right], - x - \left[ { - x} \right]} \right\\}dx} and choose the correct option from the given options below. (Where [.]\left[ . \right]denotes the greatest integer function.)
A) 12\dfrac{1}{2}
B) 11
C) 32\dfrac{3}{2}
D) 22

Explanation

Solution

To find the value of a given integral first we need to express the given function to integrate into the suitable form such that it is easy to integrate. Now we need to express the x[x]x - \left[ x \right]into \left\\{ x \right\\} and then divide the given interval to integrate into the suitable intervals.

Formulas Used:
aaf(x)dx=2oaf(x)dx\int\limits_{ - a}^a {f\left( x \right)dx} = 2\int\limits_o^a {f\left( x \right)dx} if f(x)=f(x)f\left( x \right) = f\left( { - x} \right),
abf(x)dx=baf(x)dx\int\limits_a^b {f\left( x \right)dx} = - \int\limits_b^a {f\left( x \right)dx} ,
aaf(x)dx=a0f(x)dx+oaf(x)dx\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_{ - a}^0 {f\left( x \right)dx} + \int\limits_o^a {f\left( x \right)dx}

Complete step by step answer:
Let us take,
f\left( x \right) = \min \left\\{ {x - \left[ x \right], - x - \left[ { - x} \right]} \right\\},g\left( x \right) = x - \left[ x \right]
Observe that, g\left( x \right) = \left\\{ x \right\\}. Since x - \left[ x \right] = \left\\{ x \right\\}.
Consider,
g\left( { - x} \right) = - x - \left[ { - x} \right] = \left\\{ { - x} \right\\}.
We know that,
\left\\{ x \right\\} = x in interval (0,1)\left( {0,1} \right), and
\left\\{ { - x} \right\\} = 1 - \left\\{ x \right\\}.
Now clearly,
f\left( x \right) = \min \left\\{ {x - \left[ x \right], - x - \left[ { - x} \right]} \right\\} = \min \left\\{ {\left\\{ x \right\\},\left\\{ { - x} \right\\}} \right\\},
\Rightarrow f\left( x \right) = \min \left\\{ {\left\\{ x \right\\},1 - \left\\{ x \right\\}} \right\\}
On further simplification, we get
f=x,x0.5f= x, x \leqslant 0.5
f=1x,xf= 1-x, x>0.50.5
Observe that, f(x)=f(x)f\left( x \right) = f\left( { - x} \right)
22f(x)dx=202f(x)dx\Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 2\int\limits_0^2 {f\left( x \right)dx}
Now let's split the (0,2)\left( {0,2} \right)into (0,1)+(1,2)\left( {0,1} \right) + \left( {1,2} \right)
\Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 2\left\\{ {\int\limits_0^1 {f\left( x \right)dx} + \int\limits_1^2 {f\left( x \right)dx} } \right\\}
\Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 2\left\\{ {\int\limits_0^1 {\min \left\\{ {\left\\{ x \right\\},1 - \left\\{ x \right\\}} \right\\}dx} + \int\limits_1^2 {\min \left\\{ {\left\\{ x \right\\},1 - \left\\{ x \right\\}} \right\\}dx} } \right\\}
Observe, f(x)=f(x+1)f\left( x \right) = f\left( {x + 1} \right)
f((0,1))=f((1,2))\Rightarrow f\left( {\left( {0,1} \right)} \right) = f\left( {\left( {1,2} \right)} \right)
\Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 2\left\\{ {\int\limits_0^1 {\min \left\\{ {\left\\{ x \right\\},1 - \left\\{ x \right\\}} \right\\}dx} + \int\limits_0^1 {\min \left\\{ {\left\\{ x \right\\},1 - \left\\{ x \right\\}} \right\\}dx} } \right\\}
\Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 2\left\\{ {2\left\\{ {\int\limits_0^1 {\min \left\\{ {\left\\{ x \right\\},1 - \left\\{ x \right\\}} \right\\}dx} } \right\\}} \right\\}
\Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 4\left\\{ {\int\limits_0^1 {\min \left\\{ {\left\\{ x \right\\},1 - \left\\{ x \right\\}} \right\\}dx} } \right\\}
Now let’s split the interval (0,1)\left( {0,1} \right) to (0,0.5)+(0.5,1)\left( {0,0.5} \right) + \left( {0.5,1} \right)
\Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 4\left\\{ {\int\limits_0^{0.5} {\min \left\\{ {\left\\{ x \right\\},1 - \left\\{ x \right\\}} \right\\}dx} + \int\limits_{0.5}^1 {\min \left\\{ {\left\\{ x \right\\},1 - \left\\{ x \right\\}} \right\\}dx} } \right\\}
\Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 4\left\\{ {\int\limits_0^{0.5} {\left\\{ x \right\\}dx} + \int\limits_{0.5}^1 {1 - \left\\{ x \right\\}dx} } \right\\}
We have, \left\\{ x \right\\} = xin the interval (0,1)\left( {0,1} \right)
\Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 4\left\\{ {\int\limits_0^{0.5} {xdx} + \int\limits_{0.5}^1 {1 - xdx} } \right\\}
\Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 4\left\\{ {\left[ {\dfrac{{{x^2}}}{2}} \right]_0^{0.5} + \left[ {x - \dfrac{{{x^2}}}{2}} \right]_{0.5}^1} \right\\}
By applying the limits, we get
\Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 4\left\\{ {\dfrac{{1 - \dfrac{1}{4}}}{2} + \left[ {\dfrac{1}{2} - 1 - \dfrac{{1 - \dfrac{1}{4}}}{2}} \right]} \right\\} \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 4\left\\{ {\dfrac{{\dfrac{1}{4} - 0}}{2} + \left[ {1 - \dfrac{1}{2} - \dfrac{{1 - \dfrac{1}{4}}}{2}} \right]} \right\\}
On further simplifications, we get
\Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 4\left\\{ {\dfrac{1}{4}} \right\\}
22f(x)dx=1\Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 1
So, the value of \int\limits_{ - 2}^2 {\min \left\\{ {x - \left[ x \right], - x - \left[ { - x} \right]} \right\\}dx} is 1.
Therefore, the correct option is (B).

Additional Information:
Proof of aaf(x)dx=20af(x)dx\int\limits_{ - a}^a {f\left( x \right)dx} = 2\int\limits_0^a {f\left( x \right)dx} if f(x)=f(x)f\left( x \right) = f\left( { - x} \right)
We have,
aaf(x)dx=a0f(x)dx+oaf(x)dx\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_{ - a}^0 {f\left( x \right)dx} + \int\limits_o^a {f\left( x \right)dx}
Consider,a0f(x)dx\int\limits_{ - a}^0 {f\left( x \right)dx}
Replace xx with x - x in a0f(x)dx\int\limits_{ - a}^0 {f\left( x \right)dx} .
We get,
a0f(x)dx=a0f(x)dx\int\limits_{ - a}^0 {f\left( x \right)dx} = - \int\limits_a^0 {f\left( { - x} \right)dx}
a0f(x)dx=a0f(x)dx\Rightarrow \int\limits_{ - a}^0 {f\left( x \right)dx} = - \int\limits_a^0 {f\left( x \right)dx}. Since f(x)=f(x)f\left( x \right) = f\left( { - x} \right)
a0f(x)dx=0af(x)dx\Rightarrow \int\limits_{ - a}^0 {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx}. Since abf(x)dx=baf(x)dx\int\limits_a^b {f\left( x \right)dx} = - \int\limits_b^a {f\left( x \right)dx}
Therefore, aaf(x)dx=0af(x)dx+oaf(x)dx\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_o^a {f\left( x \right)dx}
aaf(x)dx=2oaf(x)dx\int\limits_{ - a}^a {f\left( x \right)dx} = 2\int\limits_o^a {f\left( x \right)dx}
Hence Proved.

Note:
We can solve this problem in many ways. We have to be careful while solving this type of sums because when we divide the interval there is a high possibility that we are making mistakes and we have to be careful while calculating the greatest integer functions and fractional part functions. Here also there is a high chance of making mistakes. We have to be careful while calculating. Also by making mistakes in the calculations also we can get the wrong answer.