Solveeit Logo

Question

Question: Find the value of \(\int\limits_0^{\dfrac{\pi }{2}} {\sin x\sin 2x\sin 3x\sin 4xdx} = \) A. \(\df...

Find the value of 0π2sinxsin2xsin3xsin4xdx=\int\limits_0^{\dfrac{\pi }{2}} {\sin x\sin 2x\sin 3x\sin 4xdx} =
A. π4\dfrac{\pi }{4}
B. π8\dfrac{\pi }{8}
C. π16\dfrac{\pi }{{16}}
D. π32\dfrac{\pi }{{32}}

Explanation

Solution

We can equate the given integral to I. Then we can apply the property of definite integral that abf(x)dx=abf(a+bx)dx\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^b {f\left( {a + b - x} \right)dx} and this also will be equal to I. Then we can add the two equations and take the common terms outside. Then we can simplify the remaining terms by using trigonometric identities. Then using identities, we can make the terms inside the integral to the terms that we know the value of the integral. Then we can integrate and apply the limits to get the required answer.

Complete step-by-step answer:
Let I=0π2sinxsin2xsin3xsin4xdxI = \int\limits_0^{\dfrac{\pi }{2}} {\sin x\sin 2x\sin 3x\sin 4xdx} … (1)
We know that for a definite integral abf(x)dx=abf(a+bx)dx\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^b {f\left( {a + b - x} \right)dx} .
Thus II will become,
I=0π2sin(π2x)sin(2π22x)sin(3π23x)sin(4π24x)dxI = \int\limits_0^{\dfrac{\pi }{2}} {\sin \left( {\dfrac{\pi }{2} - x} \right)\sin \left( {\dfrac{{2\pi }}{2} - 2x} \right)\sin \left( {\dfrac{{3\pi }}{2} - 3x} \right)\sin \left( {\dfrac{{4\pi }}{2} - 4x} \right)dx}
On simplification, we get,
I=0π2sin(π2x)sin(π2x)sin(3π23x)sin(2π4x)dxI = \int\limits_0^{\dfrac{\pi }{2}} {\sin \left( {\dfrac{\pi }{2} - x} \right)\sin \left( {\pi - 2x} \right)\sin \left( {\dfrac{{3\pi }}{2} - 3x} \right)\sin \left( {2\pi - 4x} \right)dx}
We know that sin(π2x)=cosx\sin \left( {\dfrac{\pi }{2} - x} \right) = \cos x , sin(π2x)=sin2x\sin \left( {\pi - 2x} \right) = \sin 2x , sin(3π23x)=cos3x\sin \left( {\dfrac{{3\pi }}{2} - 3x} \right) = - \cos 3x , sin(2π4x)=sin4x\sin \left( {2\pi - 4x} \right) = - \sin 4x
Thus, the integral will become,
I=0π2cosxsin2xcos3xsin4xdx\Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {\cos x\sin 2x\cos 3x\sin 4xdx} … (2)
Now we can add equations (1) and (2)
2I=0π2sinxsin2xsin3xsin4xdx+0π2cosxsin2xcos3xsin4xdx\Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\sin x\sin 2x\sin 3x\sin 4xdx} + \int\limits_0^{\dfrac{\pi }{2}} {\cos x\sin 2x\cos 3x\sin 4xdx}
We can take the integral and other common terms from the 2 terms,
2I=0π2sin2xsin4xdx(sinxsin3x+cosxcos3x)\Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\sin 2x\sin 4xdx\left( {\sin x\sin 3x + \cos x\cos 3x} \right)}
We know that cos(AB)=sinAsinB+cosAcosB\cos \left( {A - B} \right) = \sin A\sin B + \cos A\cos B .
So sinxsin3x+cosxcos3x\sin x\sin 3x + \cos x\cos 3x will become,
sinxsin3x+cosxcos3x=cos(x3x)\Rightarrow \sin x\sin 3x + \cos x\cos 3x = \cos \left( {x - 3x} \right)
Hence, we have,
sinxsin3x+cosxcos3x=cos(2x)\Rightarrow \sin x\sin 3x + \cos x\cos 3x = \cos \left( { - 2x} \right)
We know that cos(x)=cosx\cos \left( { - x} \right) = \cos x ,
sinxsin3x+cosxcos3x=cos(2x)\Rightarrow \sin x\sin 3x + \cos x\cos 3x = \cos \left( {2x} \right)
On applying, this in the sum of the integral, we get,
2I=0π2sin2xsin4xcos2xdx\Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\sin 2x\sin 4x\cos 2xdx}
We know that, 2sinAcosA=sin2A2\sin A\cos A = \sin 2A .
So sin2xcos2x=12sin4x\sin 2x\cos 2x = \dfrac{1}{2}\sin 4x
2I=120π2sin4xsin4xdx\Rightarrow 2I = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {\sin 4x\sin 4xdx}
Hence, we have,
2I=120π2sin24xdx\Rightarrow 2I = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^2}4xdx}
We know that sin2A=1cos2A2{\sin ^2}A = \dfrac{{1 - \cos 2A}}{2} . On applying this identity, we get,
2I=120π21cos8x2dx\Rightarrow 2I = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{1 - \cos 8x}}{2}dx}
Taking 12\dfrac{1}{2} common we get,
2I=140π21cos8xdx\Rightarrow 2I = \dfrac{1}{4}\int\limits_0^{\dfrac{\pi }{2}} {1 - \cos 8xdx}
We know that 1dx=x\int {1dx = x} and
cosax=sinaxa\int {\cos ax = \dfrac{{\sin ax}}{a}}
2I=14[xsin8x8]0π2\Rightarrow 2I = \dfrac{1}{4}\left[ {x - \dfrac{{\sin 8x}}{8}} \right]_0^{\dfrac{\pi }{2}}
On applying the limits, we get,
2I=14[π2sin8×π28][0sin8×08]\Rightarrow 2I = \dfrac{1}{4}\left[ {\dfrac{\pi }{2} - \dfrac{{\sin 8 \times \dfrac{\pi }{2}}}{8}} \right] - \left[ {0 - \dfrac{{\sin 8 \times 0}}{8}} \right]
On simplification we get,
2I=14[π20][00]\Rightarrow 2I = \dfrac{1}{4}\left[ {\dfrac{\pi }{2} - 0} \right] - \left[ {0 - 0} \right]
Hence, we have,
2I=14×π2\Rightarrow 2I = \dfrac{1}{4} \times \dfrac{\pi }{2}
On dividing throughout with 2, we get,
I=π16\Rightarrow I = \dfrac{\pi }{{16}}
Therefore, the required value of the integral is π16\dfrac{\pi }{{16}}
So, the correct answer is option C.

Note: The property of definite integrals used in this problem is abf(x)dx=abf(a+bx)dx\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^b {f\left( {a + b - x} \right)dx} . After applying this, we change sin ratio to cos ratio for odd multiples of π2\dfrac{\pi }{2} and the sin ratio remains for multiples of π\pi . Then the sign of each of the ratios is determined by the quadrant in which the resultant angle lies. The 1st quadrant will have all the ratios positive; 2nd will have only sin as positive; the 3rd quadrant will have only tan as positive and the 4th quadrant have cos as positive.
The trigonometric identities used in this problem are
cos(AB)=sinAsinB+cosAcosB\cos \left( {A - B} \right) = \sin A\sin B + \cos A\cos B
2sinAcosA=sin2A2\sin A\cos A = \sin 2A
sin2A=1cos2A2{\sin ^2}A = \dfrac{{1 - \cos 2A}}{2}