Solveeit Logo

Question

Question: Find the value of \[\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}\]?...

Find the value of 01log(1xx)\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}?

Explanation

Solution

We first use the definite integral formula of abf(z)=abf(a+bz)\int\limits_{a}^{b}{f\left( z \right)}=\int\limits_{a}^{b}{f\left( a+b-z \right)}. We take the replacements of a=0,b=1,z=xa=0,b=1,z=x. We use the logarithm formula of log(ab)=log(ba)\log \left( \dfrac{a}{b} \right)=-\log \left( \dfrac{b}{a} \right). We add the integrals to find the solution of the integral.

Complete step by step answer:
We are going to use the concept of definite integral where we can use the formula of equality
abf(z)=abf(a+bz)\int\limits_{a}^{b}{f\left( z \right)}=\int\limits_{a}^{b}{f\left( a+b-z \right)}.
For our given integral the upper and lower limits are 1 and 0 respectively.
For the formula of abf(z)=abf(a+bz)\int\limits_{a}^{b}{f\left( z \right)}=\int\limits_{a}^{b}{f\left( a+b-z \right)}, we can use a=0,b=1,z=xa=0,b=1,z=x.
We can replace the value of xx with 1+0x=1x1+0-x=1-x.
Therefore, we get \int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}=\int\limits_{0}^{1}{\log \left\\{ \dfrac{1-\left( 1-x \right)}{\left( 1-x \right)} \right\\}}.
Simplifying the equation, we get \int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}=\int\limits_{0}^{1}{\log \left\\{ \dfrac{1-1+x}{1-x} \right\\}}=\int\limits_{0}^{1}{\log \left( \dfrac{x}{1-x} \right)}.
We now use the logarithmic formula of log(ab)=log(ba)\log \left( \dfrac{a}{b} \right)=-\log \left( \dfrac{b}{a} \right).
We can use the formula to get log(x1x)=log(1xx)\log \left( \dfrac{x}{1-x} \right)=-\log \left( \dfrac{1-x}{x} \right).
Let us assume I=01log(1xx)I=\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)} which gives I=01log(1xx)=01log(x1x)I=\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}=\int\limits_{0}^{1}{\log \left( \dfrac{x}{1-x} \right)}.
We now these integrals to get I+I=\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}+\int\limits_{0}^{1}{\log \left( \dfrac{x}{1-x} \right)}=\int\limits_{0}^{1}{\left\\{ \log \left( \dfrac{1-x}{x} \right)+\log \left( \dfrac{x}{1-x} \right) \right\\}}.
We already have that log(x1x)=log(1xx)\log \left( \dfrac{x}{1-x} \right)=-\log \left( \dfrac{1-x}{x} \right) which makes the integral as
I+I=\int\limits_{0}^{1}{\left\\{ \log \left( \dfrac{1-x}{x} \right)-\log \left( \dfrac{1-x}{x} \right) \right\\}}=0.
So, 2I=0I=02I=0\Rightarrow I=0.
The integral value of 01log(1xx)=0\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}=0.

Note: The definite integral is defined to be exactly the limit and summation and that’s the limit changes remain unchanged for the integrations the variable change keeps the area same.