Question
Question: Find the value of \[\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}\]?...
Find the value of 0∫1log(x1−x)?
Solution
We first use the definite integral formula of a∫bf(z)=a∫bf(a+b−z). We take the replacements of a=0,b=1,z=x. We use the logarithm formula of log(ba)=−log(ab). We add the integrals to find the solution of the integral.
Complete step by step answer:
We are going to use the concept of definite integral where we can use the formula of equality
a∫bf(z)=a∫bf(a+b−z).
For our given integral the upper and lower limits are 1 and 0 respectively.
For the formula of a∫bf(z)=a∫bf(a+b−z), we can use a=0,b=1,z=x.
We can replace the value of x with 1+0−x=1−x.
Therefore, we get \int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}=\int\limits_{0}^{1}{\log \left\\{ \dfrac{1-\left( 1-x \right)}{\left( 1-x \right)} \right\\}}.
Simplifying the equation, we get \int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}=\int\limits_{0}^{1}{\log \left\\{ \dfrac{1-1+x}{1-x} \right\\}}=\int\limits_{0}^{1}{\log \left( \dfrac{x}{1-x} \right)}.
We now use the logarithmic formula of log(ba)=−log(ab).
We can use the formula to get log(1−xx)=−log(x1−x).
Let us assume I=0∫1log(x1−x) which gives I=0∫1log(x1−x)=0∫1log(1−xx).
We now these integrals to get I+I=\int\limits_{0}^{1}{\log \left( \dfrac{1-x}{x} \right)}+\int\limits_{0}^{1}{\log \left( \dfrac{x}{1-x} \right)}=\int\limits_{0}^{1}{\left\\{ \log \left( \dfrac{1-x}{x} \right)+\log \left( \dfrac{x}{1-x} \right) \right\\}}.
We already have that log(1−xx)=−log(x1−x) which makes the integral as
I+I=\int\limits_{0}^{1}{\left\\{ \log \left( \dfrac{1-x}{x} \right)-\log \left( \dfrac{1-x}{x} \right) \right\\}}=0.
So, 2I=0⇒I=0.
The integral value of 0∫1log(x1−x)=0.
Note: The definite integral is defined to be exactly the limit and summation and that’s the limit changes remain unchanged for the integrations the variable change keeps the area same.