Solveeit Logo

Question

Question: Find the value of \[\int {\left[ {\dfrac{{\left( {x + sin{\text{ }}x} \right)}}{{\left( {1 + cos{\te...

Find the value of [(x+sin x)(1+cos x)] dx\int {\left[ {\dfrac{{\left( {x + sin{\text{ }}x} \right)}}{{\left( {1 + cos{\text{ }}x} \right)}}} \right] } {\text{ }}dx

Explanation

Solution

Hint : We have to integrate  (x+sin x)(1+cos x){\text{ }}\dfrac{{\left( {x + sin{\text{ }}x} \right)}}{{\left( {1 + cos{\text{ }}x} \right)}} with respect to xx . We solve this using integration of by parts and using various formulas of trigonometric functions . We firstly apply the double angle formula in cos function then we solve the integration by splitting it into parts and after applying by-parts we get the solution of the integral.

Complete step-by-step answer :
Given : [(x+sin x)(1+cos x)] dx\int {\left[ {\dfrac{{\left( {x + sin{\text{ }}x} \right)}}{{\left( {1 + cos{\text{ }}x} \right)}}} \right] } {\text{ }}dx
Let I=[(x+sin x)(1+cos x)] dxI = \int {\left[ {\dfrac{{\left( {x + sin{\text{ }}x} \right)}}{{\left( {1 + cos{\text{ }}x} \right)}}} \right] } {\text{ }}dx
We have to integrate II with respect to xx
As we know , cos2x=2cos2x1cos2x = 2co{s^2}x - 1
Using this formula , we get
I=[(x+sin x)(1+2cos2(x2)1)] dxI = \int {\left[ {\dfrac{{\left( {x + sin{\text{ }}x} \right)}}{{\left( {1 + 2co{s^2}\left( {\dfrac{x}{2}} \right) - 1} \right)}}} \right] } {\text{ }}dx
On simplifying , we get
I=[(x+sin x)2cos2(x2)] dxI = \int {\left[ {\dfrac{{\left( {x + sin{\text{ }}x} \right)}}{{2co{s^2}\left( {\dfrac{x}{2}} \right)}}} \right] } {\text{ }}dx
Now dividing numerator by 2cos2(x2)2co{s^2}\left( {\dfrac{x}{2}} \right) and writing the terms separately , we get
(cosx=1secx)\left( {\cos x = \dfrac{1}{{\sec x}}} \right)
I=[x2sec2x2+12sinx×sec2x2]dxI = \int {\left[ {\dfrac{x}{2}{{\sec }^2}\dfrac{x}{2} + \dfrac{1}{2}\sin x \times {{\sec }^2}\dfrac{x}{2}} \right] dx}
Also , sin2x=2sinxcosx\sin 2x = 2\sin x\cos x
Using value sin double angle , we get
I=[x2sec2x2+12×2sinx2cosx2×sec2x2]dxI = \int {\left[ {\dfrac{x}{2}{{\sec }^2}\dfrac{x}{2} + \dfrac{1}{2} \times 2\sin \dfrac{x}{2}\cos \dfrac{x}{2} \times {{\sec }^2}\dfrac{x}{2}} \right] dx}
(cosx=1secx)\left( {\cos x = \dfrac{1}{{\sec x}}} \right)
(tanx=sinxcosx)\left( {\tan x = \dfrac{{\sin x}}{{\cos x}}} \right)
After simplifying the terms , we get
I=[x2sec2x2+tanx2]dxI = \int {\left[ {\dfrac{x}{2}{{\sec }^2}\dfrac{x}{2} + \tan \dfrac{x}{2}} \right] dx}
Now , using formula of by - parts :
[uv]dx=uv dx[(ddxu)×vdx]dx\int {\left[ {uv} \right] dx} = u\int v {\text{ dx}} - \int {\left[ {\left( {\dfrac{d}{{dx}}u} \right) \times \int v dx} \right] dx}
We get,
I=x2sec2x2dx12[(ddxx)×sec2x2dx]dx+tanx2dxI = \dfrac{x}{2}\int {{{\sec }^2}\dfrac{x}{2}dx} - \dfrac{1}{2}\int {\left[ {\left( {\dfrac{d}{{dx}}x} \right) \times \int {{{\sec }^2}\dfrac{x}{2}} dx} \right] dx} + \int {\tan \dfrac{x}{2}dx}
Using integral formula sec2xdx=tanx+c\int {{{\sec }^2}x} dx = \tan x + c and [ derivative ofxn=nxn1{x^n} = n{x^{n - 1}}] , we get
I=x2tanx2×2+a12[1×tanx2×2]dx+tanx2dxI = \dfrac{x}{2}\tan \dfrac{x}{2} \times 2 + a - \dfrac{1}{2}\int {\left[ {1 \times \tan \dfrac{x}{2} \times 2} \right] dx} + \int {\tan \dfrac{x}{2}dx}
I=x2tanx2×2+a[tanx2]dx+tanx2dxI = \dfrac{x}{2}\tan \dfrac{x}{2} \times 2 + a - \int {\left[ {\tan \dfrac{x}{2}} \right] dx} + \int {\tan \dfrac{x}{2}dx}
After cancelling terms , we get
I=xtanx2+aI = x\tan \dfrac{x}{2} + a
Where aa is integration constant
So, the correct answer is “ I=xtanx2+aI = x\tan \dfrac{x}{2} + a ”.

Note : As the question was of indefinite integral that’s why we added integration constant. If the question would be of definite integral then we don’t add integral constant to the final answer .
We use the formula of By-Parts to integrate two functions of a single variable xxby taking one functions as uu and second function as vv and then applying the formula :
[uv]dx=uv dx[(ddxu)×vdx]dx\int {\left[ {uv} \right] dx} = u\int v {\text{ dx}} - \int {\left[ {\left( {\dfrac{d}{{dx}}u} \right) \times \int v dx} \right] dx}