Question
Mathematics Question on Trigonometric Equations
Find the value of ∫sin2xcos2xdx = ?
Answer
Let I = ∫sin2xcos2xdx
=∫sin2xcos2x1dx
=∫sin2xcos2xsin2x+cos2x
=∫sin2xcos2xsin2xdx+∫sin2xcos2xcos2xdx
=∫sec2xdx+∫cosec2xdx
= tanx−cotx+c
Find the value of ∫sin2xcos2xdx = ?
Let I = ∫sin2xcos2xdx
=∫sin2xcos2x1dx
=∫sin2xcos2xsin2x+cos2x
=∫sin2xcos2xsin2xdx+∫sin2xcos2xcos2xdx
=∫sec2xdx+∫cosec2xdx
= tanx−cotx+c