Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

Find the value of dxsin2xcos2x\int\frac{dx}{\,sin^2x\,cos^2x} = ?

Answer

Let I = dxsin2xcos2x\int\frac{dx}{\,sin^2x\,cos^2x}
=1sin2xcos2xdx\int\frac{1}{\,sin^2x\,cos^2x}dx
=sin2x+cos2xsin2xcos2x\int\frac{sin^2x+cos^2x}{\,sin^2x\,cos^2x}
=sin2xsin2xcos2xdx+cos2xsin2xcos2xdx\int\frac{sin^2x}{\,sin^2x\,cos^2x}dx+\int\frac{cos^2x}{\,sin^2x\,cos^2x}dx
=sec2xdx+cosec2xdx\int sec^2x\,dx+ \int cosec^2x\,dx
= tanxcotx+ctan\,x-cot\,x +c