Solveeit Logo

Question

Question: Find the value of \[\int {\dfrac{{\sec x}}{{\sqrt {\sin \left( {2x + \alpha } \right) + \sin \alpha ...

Find the value of secxsin(2x+α)+sinαdx \int {\dfrac{{\sec x}}{{\sqrt {\sin \left( {2x + \alpha } \right) + \sin \alpha } }}} dx \\\
A . 2secα(tanx+tanα)+c \sqrt {2\sec \alpha \left( {\tan x + \tan \alpha } \right)} + c\\\
B. 2secα(tanxtanα)+c \sqrt {2\sec \alpha \left( {\tan x - \tan \alpha } \right)} + c\\\
C. 2secα(tanαtanx)+c \sqrt {2\sec \alpha \left( {\tan \alpha - \tan x} \right)} + c\\\
D. 2secα(secxsecα)+c \sqrt {2\sec \alpha \left( {\sec x - \sec \alpha } \right)} + c\\\

Explanation

Solution

The given function is indefinite since there is no limit given. The indefinite integral of a function f is a differentiable function F whose derivative is equal to the original function f. The first fundamental theorem of calculus allows definite integrals to be computed in terms of indefinite integrals.

Complete step by step solution:
Let the given integral be II such that:
I=secxsin(2x+α)+sinαdx(i)I = \int {\dfrac{{\sec x}}{{\sqrt {\sin \left( {2x + \alpha } \right) + \sin \alpha } }}} dx - - (i)
We know the trigonometric addition and subtraction identities ofsin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B, hence by using this identity we can write equation (i) as

I=secxsin2xcosα+cos2xsinα+sinαdx =secxsin2xcosα+sinα(cos2x+1)dx  I = \int {\dfrac{{\sec x}}{{\sqrt {\sin 2x\cos \alpha + \cos 2x\sin \alpha + \sin \alpha } }}} dx \\\ = \int {\dfrac{{\sec x}}{{\sqrt {\sin 2x\cos \alpha + \sin \alpha \left( {\cos 2x + 1} \right)} }}} dx \\\

Since, 1+cos2θ=2cos2θ1 + \cos 2\theta = 2{\cos ^2}\theta and also sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta hence by using these identities the equation can be further written as:
I=secx2sinxcosxcosα+sinα(2cos2x)dxI = \int {\dfrac{{\sec x}}{{\sqrt {2\sin x\cos x\cos \alpha + \sin \alpha \left( {2{{\cos }^2}x} \right)} }}} dx
Substitute sinx=tanxcosx\sin x = \tan x\cos x in the above equation, we get

I=secx2(tanxcosx)cosxcosα+sinα(2cos2x)dx I=secx2tanxcos2xcosα+sinα(2cos2x)dx  I = \int {\dfrac{{\sec x}}{{\sqrt {2\left( {\tan x\cos x} \right)\cos x\cos \alpha + \sin \alpha \left( {2{{\cos }^2}x} \right)} }}} dx \\\ I = \int {\dfrac{{\sec x}}{{\sqrt {2\tan x{{\cos }^2}x\cos \alpha + \sin \alpha \left( {2{{\cos }^2}x} \right)} }}} dx \\\

Now take 2cos2x2{\cos ^2}x as common in the denominator, so we get
I=12secxcosxtanxcosα+sinαdx [tanx=sinxcosx]I = \dfrac{1}{{\sqrt 2 }}\int {\dfrac{{\sec x}}{{\cos x\sqrt {\tan x\cos \alpha + \sin \alpha } }}} dx{\text{ }}\left[ {\because \tan x = \dfrac{{\sin x}}{{\cos x}}} \right]
This can be further written as
I=12sec2xtanxcosα+sinαdx(ii) [secx=1cosx]I = \dfrac{1}{{\sqrt 2 }}\int {\dfrac{{{{\sec }^2}x}}{{\sqrt {\tan x\cos \alpha + \sin \alpha } }}} dx - - (ii){\text{ }}\left[ {\because \sec x = \dfrac{1}{{\cos x}}} \right]
Now let tanxcosα+sinα=t2(iii)\tan x\cos \alpha + \sin \alpha = {t^2} - - (iii)
Now differentiate equation (iii) with respect to ‘t’, so we will get

sec2xcosαdx+0=2tdt sec2x=2tcosαdt(iv)  {\sec ^2}x\cos \alpha dx + 0 = 2tdt \\\ {\sec ^2}x = \dfrac{{2t}}{{\cos \alpha }}dt - - (iv) \\\

Now substitute the value of (iii) and (iv) in equation (ii), we get

I=12(2tcosα)t2dt =122cosαdt =22cosαdt  I = \dfrac{1}{{\sqrt 2 }}\int {\dfrac{{\left( {\dfrac{{2t}}{{\cos \alpha }}} \right)}}{{\sqrt {{t^2}} }}} dt \\\ = \dfrac{1}{{\sqrt 2 }}\int {\dfrac{2}{{\cos \alpha }}} dt \\\ = \dfrac{2}{{\sqrt 2 \cos \alpha }}\int {dt} \\\

Now by integration, we get
I=22cosαt+cI = \dfrac{2}{{\sqrt 2 \cos \alpha }}t + c
Now substitute the value of t in obtained equation from equation (iii), so we get

I=2cosαtanxcosα+sinα+c =2sec2α(tanxcosα+sinα)+c =2secα(tanxcosαsecα+sinαsecα)+c =2secα(tanx+tanα)+c  I = \dfrac{{\sqrt 2 }}{{\cos \alpha }}\sqrt {\tan x\cos \alpha + \sin \alpha } + c \\\ = \sqrt {2{{\sec }^2}\alpha \left( {\tan x\cos \alpha + \sin \alpha } \right)} + c \\\ = \sqrt {2\sec \alpha \left( {\tan x\cos \alpha \sec \alpha + \sin \alpha \sec \alpha } \right)} + c \\\ = \sqrt {2\sec \alpha \left( {\tan x + \tan \alpha } \right)} + c \\\

Therefore we can say
secxsin(2x+α)+sinαdx=2secα(tanx+tanα)+c\int {\dfrac{{\sec x}}{{\sqrt {\sin \left( {2x + \alpha } \right) + \sin \alpha } }}} dx = \sqrt {2\sec \alpha \left( {\tan x + \tan \alpha } \right)} + c

Option A is correct.

Important equations used:
cos2θ=2cos2θ1\cos 2\theta = 2{\cos ^2}\theta - 1
sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B
dx=x+c\int {dx = x + c}
tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}
secx=1cosx\sec x = \dfrac{1}{{\cos x}}

Note:
While substituting the real parameter of the question with the auxiliary parameter, one should be sure that it will not make the problem more complex. However, selecting an auxiliary parameter completely depends on the individual point of view.