Solveeit Logo

Question

Question: Find the value of \[\int {\dfrac{{dx}}{{{e^x} + {e^{ - x}}}}} \]....

Find the value of dxex+ex\int {\dfrac{{dx}}{{{e^x} + {e^{ - x}}}}} .

Explanation

Solution

We can rewrite the given expression by substituting ex=1ex{e^{ - x}} = \dfrac{1}{{{e^x}}}. Simplifying the expression, we can use the substitution method for integration. We can substitute a new variable for ex{e^x}. Expressing all in terms of tt, we get a new function. Then we can apply the derivative of tan1x{\tan ^{ - 1}}x. Substituting back for tt we get the answer.

Useful formula:
For any variable xx we have, dexdx=ex\dfrac{{d{e^x}}}{{dx}} = {e^x}
For any variable tt we have,
ddt(tan1t)=11+t2\dfrac{d}{{dt}}({\tan ^{ - 1}}t) = \dfrac{1}{{1 + {t^2}}}
dtt2+1=tan1t+C\int {\dfrac{{dt}}{{{t^2} + 1}}} = {\tan ^{ - 1}}t + C, where CC is the constant of integration.

Complete step-by-step answer:
Consider 1ex+ex\dfrac{1}{{{e^x} + {e^{ - x}}}}
We know, ex=1ex{e^{ - x}} = \dfrac{1}{{{e^x}}}.
So we can write the expression as,
1ex+ex=1ex+1ex\dfrac{1}{{{e^x} + {e^{ - x}}}} = \dfrac{1}{{{e^x} + \dfrac{1}{{{e^x}}}}}
Simplifying the expression we get,
1ex+ex=1e2x+1ex\dfrac{1}{{{e^x} + {e^{ - x}}}} = \dfrac{1}{{\dfrac{{{e^{2x}} + 1}}{{{e^x}}}}}
1ex+ex=exe2x+1\Rightarrow \dfrac{1}{{{e^x} + {e^{ - x}}}} = \dfrac{{{e^x}}}{{{e^{2x}} + 1}}
Integrating both sides with respect to xx we get,
dxex+ex=exdxe2x+1\int {\dfrac{{dx}}{{{e^x} + {e^{ - x}}}}} = \int {\dfrac{{{e^x}dx}}{{{e^{2x}} + 1}}}
We can integrate this using substitution method.
Here we can observe that e2x=(ex)2{e^{2x}} = {({e^x})^2}
Now put ex=t{e^x} = t
Differentiating both sides we get,
exdx=dt{e^x}dx = dt, since derivative of ex{e^x} is ex{e^x} itself.
Also e2x=(ex)2=t2{e^{2x}} = {({e^x})^2} = {t^2}
This gives exdxe2x+1=dtt2+1\dfrac{{{e^x}dx}}{{{e^{2x}} + 1}} = \dfrac{{dt}}{{{t^2} + 1}}
So we have,
dxex+ex=dtt2+1\int {\dfrac{{dx}}{{{e^x} + {e^{ - x}}}}} = \int {\dfrac{{dt}}{{{t^2} + 1}}}
We have ddt(tan1t)=11+t2\dfrac{d}{{dt}}({\tan ^{ - 1}}t) = \dfrac{1}{{1 + {t^2}}}
We know that the derivative of a constant is always 00. So if there is a constant term added to tan1t{\tan ^{ - 1}}t, the derivative will remain 00.
This gives dtt2+1=tan1t+C\int {\dfrac{{dt}}{{{t^2} + 1}}} = {\tan ^{ - 1}}t + C, where CC is the constant of integration.
dxex+ex=tan1t+C\Rightarrow \int {\dfrac{{dx}}{{{e^x} + {e^{ - x}}}}} = {\tan ^{ - 1}}t + C, where CC is the constant of integration
Substituting for tt we get,
dxex+ex=tan1(ex)+C\Rightarrow \int {\dfrac{{dx}}{{{e^x} + {e^{ - x}}}}} = {\tan ^{ - 1}}({e^x}) + C, where CC is the constant of integration
\therefore The answer is tan1(ex)+C{\tan ^{ - 1}}({e^x}) + C, where CC is the constant of integration.

Note: We need to rewrite the equation so that we can apply the method of substitution. In the method of substitution, we have to express every term in the function in terms of the new variable used. It is important to add the constant of integration since the integral is indefinite.