Solveeit Logo

Question

Question: Find the value of \[\int {\dfrac{{\cos x + x\sin x}}{{x(x + \cos x)}}dx} \] A) \[\log \left| {\df...

Find the value of cosx+xsinxx(x+cosx)dx\int {\dfrac{{\cos x + x\sin x}}{{x(x + \cos x)}}dx}
A) logxx+cosx+c\log \left| {\dfrac{x}{{x + \cos x}}} \right| + c
B) logx+cosxx+c\log \left| {\dfrac{{x + \cos x}}{x}} \right| + c
C) log1x+cosx+c\log \left| {\dfrac{1}{{x + \cos x}}} \right| + c
D) logx+cosx+c\log \left| {x + \cos x} \right| + c

Explanation

Solution

We will rewrite the numerator of the integrand in such a way that there is a relation between the numerator and denominator. Then, we will separate the integrand and we will apply appropriate formulae of integration and find the value.
Formula used: 1xdx=logx+c\int {\dfrac{1}{x}dx = \log \left| x \right| + c} , logalogb=logab\log \left| a \right| - \log \left| b \right| = \log \left| {\dfrac{a}{b}} \right|

Complete step by step solution:
We have to integrate cosx+xsinxx(x+cosx)dx\int {\dfrac{{\cos x + x\sin x}}{{x(x + \cos x)}}dx}
Now we will try to make the numerator similar to the denominator.
Let us add and subtract xx in the numerator. This gives us
cosx+xsinxx(x+cosx)dx=cosx+xsinx+xxx(x+cosx)dx\int {\dfrac{{\cos x + x\sin x}}{{x(x + \cos x)}}dx} = \int {\dfrac{{\cos x + x\sin x + x - x}}{{x(x + \cos x)}}} dx ……….(1)(1)
Let us club xxand cosx\cos x together. Also, we will club xsinxx\sin x and x - x together. Equation (1)(1) becomes
cosx+xsinxx(x+cosx)dx=(x+cosx)+(xsinxx)x(x+cosx)dx\int {\dfrac{{\cos x + x\sin x}}{{x(x + \cos x)}}dx} = \int {\dfrac{{(x + \cos x) + (x\sin x - x)}}{{x(x + \cos x)}}} dx ……….(2)(2)
Now, we will separate the terms in the integrand as follows:
cosx+xsinxx(x+cosx)dx=(x+cosx)x(x+cosx)dx+(xsinxx)x(x+cosx)dx\int {\dfrac{{\cos x + x\sin x}}{{x(x + \cos x)}}dx} = \int {\dfrac{{(x + \cos x)}}{{x(x + \cos x)}}} dx + \int {\dfrac{{(x\sin x - x)}}{{x(x + \cos x)}}dx} ……….(3)(3)
Let us take I1=x+cosxx(x+cosx)dx{I_1} = \int {\dfrac{{x + \cos x}}{{x(x + \cos x)}}dx} and I2=xsinxxx(x+cosx)dx{I_2} = \int {\dfrac{{x\sin x - x}}{{x(x + \cos x)}}dx}
Now, in I1{I_1}, the term x+cosxx + \cos x is common in both the numerator and the denominator. So, we will cancel it out. Hence,
I1=1xdx=logx+c{I_1} = \int {\dfrac{1}{x}dx} = \log \left| x \right| + c, where cc is a constant
In I2{I_2}, the factor xx is common in the numerator. We will take it out. So,
I2=x(sinx1)x(x+cosx)dx{I_2} = \int {\dfrac{{x(\sin x - 1)}}{{x(x + \cos x)}}dx}
Both the numerator and denominator have xx in common. So, we will cancel it out. This gives us
I2=sinx1x+cosxdx{I_2} = \int {\dfrac{{\sin x - 1}}{{x + \cos x}}dx}
We will use a substitution method to solve I2{I_2}. Let us take x+cosx=ux + \cos x = u. Differentiating uuwith respect to xx, we get
1sinx=dudx (sinx1)dx=du (sinx1)dx=du\begin{array}{l}1 - \sin x = \dfrac{{du}}{{dx}}\\\ \Rightarrow - (\sin x - 1)dx = du\\\ \Rightarrow (\sin x - 1)dx = - du\end{array}
Rewriting I2{I_2} in terms of uu, we get
I2=duu=1udu{I_2} = \int {\dfrac{{ - du}}{u} = - \int {\dfrac{1}{u}du} }
Therefore, we get I2{I_2} as
I2=logu+c=logx+cosx+c{I_2} = - \log \left| u \right| + c = - \log \left| {x + \cos x} \right| + c
Substituting the values of I1{I_1} and I2{I_2} in equation (3)(3) we get
cosx+xsinxx(x+cosx)dx=logxlogx+cosx+c\int {\dfrac{{\cos x + x\sin x}}{{x(x + \cos x)}}dx} = \log \left| x \right| - \log \left| {x + \cos x} \right| + c………..(4)(4)
Using the property logalogb=logab\log \left| a \right| - \log \left| b \right| = \log \left| {\dfrac{a}{b}} \right| in equation (4)(4), we finally get
cosx+xsinxx(x+cosx)dx=logxx+cosx+c\int {\dfrac{{\cos x + x\sin x}}{{x(x + \cos x)}}dx} = \log \left| {\dfrac{x}{{x + \cos x}}} \right| + c

Therefore, the correct option is A.

Note:
Here, we can observe that the denominator of the integrand is x(x+cosx)x(x + \cos x), which is a combination of algebraic and trigonometric functions. For such integrands, we will try to rewrite the numerator in such a way that there are similar terms in the numerator and the denominator. Integration is the inverse of differentiation and is used to find the summation of discrete data.