Solveeit Logo

Question

Question: Find the value of \[\int {\dfrac{1}{{x\log x\log \left( {\log x} \right)}}} dx\]. A. \[\left[ {\lo...

Find the value of 1xlogxlog(logx)dx\int {\dfrac{1}{{x\log x\log \left( {\log x} \right)}}} dx.
A. [log(logx)]\left[ {\log \left( {\log x} \right)} \right]
B. log[log(logx)]\log \left[ {\log \left( {\log x} \right)} \right]
C. log[log(logx2)]\log \left[ {\log \left( {\log {x^2}} \right)} \right]
D. log[log(logx)] - \log \left[ {\log \left( {\log x} \right)} \right]

Explanation

Solution

Hint: This problem can be solved by using a substitution method. According to the substitution method, the given integral can be transformed into another form by changing the independent variable x to tx{\text{ to }}t. So, use this concept to reach the solution of the given problem.

Complete step-by-step answer:

Let I=1xlogxlog(logx)dxI = \int {\dfrac{1}{{x\log x\log \left( {\log x} \right)}}} dx
Put log(logx)=t\log \left( {\log x} \right) = t
Differentiating log(logx)=t\log \left( {\log x} \right) = t w.r.t xx, we have

ddx[log(logx)]=ddx(t) 1logx×ddx(logx)=dtdx [ddx(logx)=1x] 1xlogx=dtdx dx=xlogxdt....................................................(1)  \Rightarrow \dfrac{d}{{dx}}\left[ {\log \left( {\log x} \right)} \right] = \dfrac{d}{{dx}}\left( t \right) \\\ \Rightarrow \dfrac{1}{{\log x}} \times \dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{{dt}}{{dx}}{\text{ }}\left[ {\because \dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}} \right] \\\ \Rightarrow \dfrac{1}{{x\log x}} = \dfrac{{dt}}{{dx}} \\\ \therefore dx = x\log xdt....................................................\left( 1 \right) \\\

Using equation (1), we get

I=1xlogx(t)xlogxdt I=1tdt I=logt+c [1xdx=logx+c]  I = \int {\dfrac{1}{{x\log x\left( t \right)}}x\log xdt} \\\ I = \int {\dfrac{1}{t}dt} \\\ I = \log t + c{\text{ }}\left[ {\because \int {\dfrac{1}{x}dx = \log x + c} } \right] \\\

Substituting log(logx)=t\log \left( {\log x} \right) = t, we get
I=log[log(logx)]+cI = \log \left[ {\log \left( {\log x} \right)} \right] + c
Hence, I=1xlogxlog(logx)dx=log[log(logx)]+cI = \int {\dfrac{1}{{x\log x\log \left( {\log x} \right)}}} dx = \log \left[ {\log \left( {\log x} \right)} \right] + c
Thus, the correct option is B. log[log(logx)]\log \left[ {\log \left( {\log x} \right)} \right]

Note: A constant namely integrating constant that is added to the function obtained by evaluating the indefinite integral of a given function, indicating that all indefinite integrals of the given function differ by, at most, a constant. So, it is necessary to add integrating constants after completion of the integral.