Solveeit Logo

Question

Question: Find the value of \[\int {\dfrac{1}{{x\left( {{x^n} + 1} \right)}}dx} \]. A.\[\dfrac{1}{n}\log \le...

Find the value of 1x(xn+1)dx\int {\dfrac{1}{{x\left( {{x^n} + 1} \right)}}dx} .
A.1nlog(xnxn+1)+C\dfrac{1}{n}\log \left( {\dfrac{{{x^n}}}{{{x^n} + 1}}} \right) + C
B.log(xn+1xn)+C\log \left( {\dfrac{{{x^n} + 1}}{{{x^n}}}} \right) + C
C.1nlog(xn+1xn)+C\dfrac{1}{n}\log \left( {\dfrac{{{x^n} + 1}}{{{x^n}}}} \right) + C
D.log(xnxn+1)+C\log \left( {\dfrac{{{x^n}}}{{{x^n} + 1}}} \right) + C

Explanation

Solution

Here, we will take u=xn+1u = {x^n} + 1 and then differentiate it with respect to xx. Then we will take the partial fraction of 1u(u1)\dfrac{1}{{u\left( {u - 1} \right)}} and then use the integral properties to find the required value.

Complete step-by-step answer:
We are given that
1x(xn+1)dx\int {\dfrac{1}{{x\left( {{x^n} + 1} \right)}}dx}
Taking u=xn+1u = {x^n} + 1 and then differentiate it with respect to xx, we get
dudx=nxn1\Rightarrow \dfrac{{du}}{{dx}} = n{x^{n - 1}}
Cross-multiplying the above equation, we get
du=nxn1dx\Rightarrow du = n{x^{n - 1}}dx
Substituting the value of uu and dudu in the given equation, we get

1nu(u1)du 1n1u(u1)du  \Rightarrow \int {\dfrac{1}{{nu\left( {u - 1} \right)}}du} \\\ \Rightarrow \dfrac{1}{n}\int {\dfrac{1}{{u\left( {u - 1} \right)}}du} \\\

Taking the partial fraction of 1u(u1)\dfrac{1}{{u\left( {u - 1} \right)}} in the above equation, we get

1n(1u+1u1)du 1n1udu+1n1u1du  \Rightarrow \dfrac{1}{n}\int {\left( { - \dfrac{1}{u} + \dfrac{1}{{u - 1}}} \right)du} \\\ \Rightarrow - \dfrac{1}{n}\int {\dfrac{1}{u}du} + \dfrac{1}{n}\int {\dfrac{1}{{u - 1}}du} \\\

Using the value 1udu=lnu+C\int {\dfrac{1}{u}du} = \ln \left| u \right| + C in the above equation, we get

1nlnu+1nlnu1+C 1n(lnu+lnu1)+C 1n(lnu1lnu)+C  \Rightarrow - \dfrac{1}{n}\ln \left| u \right| + \dfrac{1}{n}\ln \left| {u - 1} \right| + C \\\ \Rightarrow \dfrac{1}{n}\left( { - \ln \left| u \right| + \ln \left| {u - 1} \right|} \right) + C \\\ \Rightarrow \dfrac{1}{n}\left( {\ln \left| {u - 1} \right| - \ln \left| u \right|} \right) + C \\\

Using the logarithm value lnalnb=lnab\ln a - \ln b = \ln \dfrac{a}{b} in the above equation, we get
1nln(u1u)\Rightarrow \dfrac{1}{n}\ln \left( {\dfrac{{u - 1}}{u}} \right)

Substituting u=xn+1u = {x^n} + 1 back in the above equation, we get

1nln(xn+11xn+1)+C 1nln(xnxn+1)+C  \Rightarrow \dfrac{1}{n}\ln \left( {\dfrac{{{x^n} + 1 - 1}}{{{x^n} + 1}}} \right) + C \\\ \Rightarrow \dfrac{1}{n}\ln \left( {\dfrac{{{x^n}}}{{{x^n} + 1}}} \right) + C \\\

Hence, option A is correct.

Note: We need to know that while finding the value of indefinite integral, we have to add the constant in the final answer or else the answer will be incomplete. We have to be really thorough with the integrations and differentiation of the functions. The key point in this question is to use the integration by partial sums and integration rule,1udu=lnu+C\int {\dfrac{1}{u}du} = \ln \left| u \right| + C to solve this problem. Do not forget that many integrals can be evaluated in multiple ways and so more than one technique may be used on it, but this problem can only be solved by parts.