Solveeit Logo

Question

Question: Find the value of \[\int{\dfrac{1}{\sqrt{{{\sin }^{3}}x\times {{\cos }^{5}}x}}dx}\] A.\(\dfrac{-2...

Find the value of 1sin3x×cos5xdx\int{\dfrac{1}{\sqrt{{{\sin }^{3}}x\times {{\cos }^{5}}x}}dx}
A.2tanx+23(tanx)32+C\dfrac{-2}{\sqrt{\tan x}}+\dfrac{2}{3}{{\left( \tan x \right)}^{^{\dfrac{3}{2}}}}+C
B.2tanx23(tanx)32+C\dfrac{2}{\sqrt{\tan x}}-\dfrac{2}{3}{{\left( \tan x \right)}^{^{\dfrac{3}{2}}}}+C
C.2tanx+23(tanx)12+C\dfrac{-2}{\sqrt{\tan x}}+\dfrac{2}{3}{{\left( \tan x \right)}^{^{\dfrac{1}{2}}}}+C
D.None of these.

Explanation

Solution

Hint: Divide the numerator and denominator of the expression by cos4x{{\cos }^{4}}x and convert the expression in terms of ‘tan’ and ‘sec’ and then put ‘tan x = t’ and use the formula xndx=xn+1n+1+C\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C and get the answer in terms of ‘t’. Then replace ‘t’ by ‘tan x’ and simplify the equation to get the final answer.

Complete step by step answer:
To solve the given expression we will write it down first and assume it as ‘L’
L=1sin3x×cos5xdx\therefore L=\int{\dfrac{1}{\sqrt{{{\sin }^{3}}x\times {{\cos }^{5}}x}}dx} …………………………………………………… (1)
As we see the above equation is in the form of ‘sin’ and ‘cos’ and to solve this we have to convert it in ‘tan’ so that we can solve it. If we add the powers of the term sin3x×cos5x{{\sin }^{3}}x\times {{\cos }^{5}}x we will get, 3 + 5 = 8 and if we divide the term by cos8x{{\cos }^{8}}x we will get the term completely converted to ‘tan’.
To divide the term sin3x×cos5x{{\sin }^{3}}x\times {{\cos }^{5}}x by cos8x{{\cos }^{8}}x we have to divide sin3x×cos5x\sqrt{{{\sin }^{3}}x\times {{\cos }^{5}}x} by cos4x{{\cos }^{4}}x as cos8x=cos4x\sqrt{{{\cos }^{8}}x}={{\cos }^{4}}x.
Therefore dividing the above equation by cos4x{{\cos }^{4}}x to both the numerator and denominator we will get,
L=1cos4xsin3x×cos5xcos4xdx\therefore L=\int{\dfrac{\dfrac{1}{{{\cos }^{4}}x}}{\dfrac{\sqrt{{{\sin }^{3}}x\times {{\cos }^{5}}x}}{{{\cos }^{4}}x}}dx}
As we know that 1cos4x\dfrac{1}{{{\cos }^{4}}x} is equal to sec4x{{\sec }^{4}}x therefore above equation will become,
L=sec4xsin3x×cos5xcos4xdx\therefore L=\int{\dfrac{{{\sec }^{4}}x}{\dfrac{\sqrt{{{\sin }^{3}}x\times {{\cos }^{5}}x}}{{{\cos }^{4}}x}}dx}
Also we know that cos4x=cos8x{{\cos }^{4}}x=\sqrt{{{\cos }^{8}}x} therefore by replacing cos4x{{\cos }^{4}}x by cos8x\sqrt{{{\cos }^{8}}x} in the above equation we will get,
L=sec4xsin3x×cos5xcos8xdx\therefore L=\int{\dfrac{{{\sec }^{4}}x}{\dfrac{\sqrt{{{\sin }^{3}}x\times {{\cos }^{5}}x}}{\sqrt{{{\cos }^{8}}x}}}dx}
Above equation can also be written as,
L=sec4xsin3x×cos5xcos8xdx\therefore L=\int{\dfrac{{{\sec }^{4}}x}{\sqrt{\dfrac{{{\sin }^{3}}x\times {{\cos }^{5}}x}{{{\cos }^{8}}x}}}dx}
L=sec4xsin3x×cos5xcos(3+5)xdx\therefore L=\int{\dfrac{{{\sec }^{4}}x}{\sqrt{\dfrac{{{\sin }^{3}}x\times {{\cos }^{5}}x}{{{\cos }^{\left( 3+5 \right)}}x}}}dx}
Now to proceed further in the solution we should know the formula given below,
Formula:
am×an=am+n{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}
Referring to above formula we can replace cos(3+5)x{{\cos }^{\left( 3+5 \right)}}x by cos3xcos5x{{\cos }^{3}}x{{\cos }^{5}}x in ‘L’ therefore we will get,
L=sec4xsin3x×cos5xcos3xcos5xdx\therefore L=\int{\dfrac{{{\sec }^{4}}x}{\sqrt{\dfrac{{{\sin }^{3}}x\times {{\cos }^{5}}x}{{{\cos }^{3}}x{{\cos }^{5}}x}}}dx}
As we all know that sinxcosx=tanx\dfrac{\sin x}{\cos x}=\tan x therefore above equation will become,
L=sec4xtan3xdx\therefore L=\int{\dfrac{{{\sec }^{4}}x}{\sqrt{{{\tan }^{3}}x}}dx}
We can also write the above equation as,
L=sec2x×sec2xtan3xdx\therefore L=\int{\dfrac{{{\sec }^{2}}x\times {{\sec }^{2}}x}{\sqrt{{{\tan }^{3}}x}}dx}
As we all know the identity i.e. 1+tan2x=sec2x1+{{\tan }^{2}}x={{\sec }^{2}}x therefore above equation will become,
L=(1+tan2x)×sec2xtan3xdx\therefore L=\int{\dfrac{\left( 1+{{\tan }^{2}}x \right)\times {{\sec }^{2}}x}{\sqrt{{{\tan }^{3}}x}}dx}
Now we will put, tan x = t in the above equation, ………………………………………………… (2)
Therefore, sec2xdx=dt{{\sec }^{2}}xdx=dt ……………………………………………………………………………………. (3)
Also, as tan x = t
Squaring on both sides we will get,
tan2x=t2{{\tan }^{2}}x={{t}^{2}} ………………………………………………….. (4)
If we put the values of equation (2), equation (3) and equation (4) in ‘L’ we will get,
L=1+t2t3dt\therefore L=\int{\dfrac{1+{{\operatorname{t}}^{2}}}{\sqrt{{{\operatorname{t}}^{3}}}}dt}
Above equation can also be written as,
L=1+t2t32dt\therefore L=\int{\dfrac{1+{{\operatorname{t}}^{2}}}{{{\operatorname{t}}^{\dfrac{3}{2}}}}dt}
If we separate the denominator in the above equation we will get,
L=[1t32+t2t32]dt\therefore L=\int{\left[ \dfrac{1}{{{\operatorname{t}}^{\dfrac{3}{2}}}}+\dfrac{{{\operatorname{t}}^{2}}}{{{\operatorname{t}}^{\dfrac{3}{2}}}} \right]dt}
L=[t32+t232]dt\therefore L=\int{\left[ {{\operatorname{t}}^{-\dfrac{3}{2}}}+{{\operatorname{t}}^{2-\dfrac{3}{2}}} \right]dt}
L=[t32+t432]dt\therefore L=\int{\left[ {{\operatorname{t}}^{-\dfrac{3}{2}}}+{{\operatorname{t}}^{\dfrac{4-3}{2}}} \right]dt}
L=[t32+t12]dt\therefore L=\int{\left[ {{\operatorname{t}}^{-\dfrac{3}{2}}}+{{\operatorname{t}}^{\dfrac{1}{2}}} \right]dt}
Now to proceed further in the solution we should know the formula given below,
Formula:
xndx=xn+1n+1+C\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C
By using above formula in ‘L’ we will get,
L=t32+132+1+t12+112+1+C\therefore L=\dfrac{{{\operatorname{t}}^{-\dfrac{3}{2}+1}}}{-\dfrac{3}{2}+1}+\dfrac{{{\operatorname{t}}^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1}+C
L=t132132+t12+112+1+C\therefore L=\dfrac{{{\operatorname{t}}^{1-\dfrac{3}{2}}}}{1-\dfrac{3}{2}}+\dfrac{{{\operatorname{t}}^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1}+C
L=t232232+t1+221+22+C\therefore L=\dfrac{{{\operatorname{t}}^{\dfrac{2-3}{2}}}}{\dfrac{2-3}{2}}+\dfrac{{{\operatorname{t}}^{\dfrac{1+2}{2}}}}{\dfrac{1+2}{2}}+C
L=t1212+t3232+C\therefore L=\dfrac{{{\operatorname{t}}^{\dfrac{-1}{2}}}}{\dfrac{-1}{2}}+\dfrac{{{\operatorname{t}}^{\dfrac{3}{2}}}}{\dfrac{3}{2}}+C
L=t12×21+t32×23+C\therefore L={{\operatorname{t}}^{\dfrac{-1}{2}}}\times \dfrac{-2}{1}+{{\operatorname{t}}^{\dfrac{3}{2}}}\times \dfrac{2}{3}+C
If we substitute the value of ‘t’ from equation (2) in the above equation we will get,
L=2tan12x+23tan32x+C\therefore L=-2{{\tan }^{\dfrac{-1}{2}}}x+\dfrac{2}{3}{{\tan }^{\dfrac{3}{2}}}x+C
L=21tan12x+23(tanx)32+C\therefore L=-2\dfrac{1}{{{\tan }^{\dfrac{1}{2}}}x}+\dfrac{2}{3}{{\left( \tan x \right)}^{\dfrac{3}{2}}}+C
L=2tanx+23(tanx)32+C\therefore L=\dfrac{-2}{\sqrt{\tan x}}+\dfrac{2}{3}{{\left( \tan x \right)}^{\dfrac{3}{2}}}+C
If we put the value of ‘L’ from equation (1) in the above equation we will get,
1sin3x×cos5xdx=2tanx+23(tanx)32+C\therefore \int{\dfrac{1}{\sqrt{{{\sin }^{3}}x\times {{\cos }^{5}}x}}dx}=\dfrac{-2}{\sqrt{\tan x}}+\dfrac{2}{3}{{\left( \tan x \right)}^{\dfrac{3}{2}}}+C
Therefore the value of 1sin3x×cos5xdx\int{\dfrac{1}{\sqrt{{{\sin }^{3}}x\times {{\cos }^{5}}x}}dx} is equal to 2tanx+23(tanx)32+C\dfrac{-2}{\sqrt{\tan x}}+\dfrac{2}{3}{{\left( \tan x \right)}^{\dfrac{3}{2}}}+C.
Therefore the correct answer is option (a).

Note: Do not use the formula sin2x×cos2x=1{{\sin }^{2}}x\times {{\cos }^{2}}x=1 in the given expression otherwise it will lead to wrong results. Also whenever you find both ‘sin’ and ‘cos’ in denominator always try to convert it in the form of ‘tan’ and ‘sec’ for simplicity.