Solveeit Logo

Question

Question: Find the value of \[\int {\dfrac{1}{{\sin x\cos x\left( {{{\tan }^9}x + 1} \right)}}} dx = \\\ \]...

Find the value of
1sinxcosx(tan9x+1)dx= \int {\dfrac{1}{{\sin x\cos x\left( {{{\tan }^9}x + 1} \right)}}} dx = \\\
A. logcos9xsin9x+cos9x+c \log \left| {\dfrac{{{{\cos }^9}x}}{{{{\sin }^9}x + {{\cos }^9}x}}} \right| + c\\\
B . 19logsin9xsin9x+cos9x+c \dfrac{1}{9}\log \left| {\dfrac{{{{\sin }^9}x}}{{{{\sin }^9}x + {{\cos }^9}x}}} \right| + c\\\
C. 19logsin9x+cos9xsin9x+c \dfrac{1}{9}\log \left| {\dfrac{{{{\sin }^9}x + {{\cos }^9}x}}{{{{\sin }^9}x}}} \right| + c\\\
D. 19logcos9xsin9x+cos9x+c \dfrac{1}{9}\log \left| {\dfrac{{{{\cos }^9}x}}{{{{\sin }^9}x + {{\cos }^9}x}}} \right| + c\\\

Explanation

Solution

The given function is indefinite since there is no limit given. The indefinite integral of a function f is a differentiable function F whose derivative is equal to the original function f. The first fundamental theorem of calculus allows definite integrals to be computed in terms of indefinite integrals.

Complete step by step solution:
Let the given integral be II such that:
I=1sinxcosx(tan9x+1)dx(i)I = \int {\dfrac{1}{{\sin x\cos x\left( {{{\tan }^9}x + 1} \right)}}} dx - - (i)
Now divide the numerator and the denominator of the given integral by cos2x{\cos ^2}x
I=(1cos2x)(sinxcosx(tan9x+1)cos2x)dx(ii)I = \int {\dfrac{{\left( {\dfrac{1}{{{{\cos }^2}x}}} \right)}}{{\left( {\dfrac{{\sin x\cos x\left( {{{\tan }^9}x + 1} \right)}}{{{{\cos }^2}x}}} \right)}}} dx - - (ii)
We know that the relation secx=1cosx\sec x = \dfrac{1}{{\cos x}} holds true as the Reciprocal identities, and the relation tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}} holds true as the Quotient identities.
Hence by using these trigonometric identities, we get integral in equation (ii) as
I=sec2xtanx(tan9x+1)dx(iii)I = \int {\dfrac{{{{\sec }^2}x}}{{\tan x\left( {{{\tan }^9}x + 1} \right)}}} dx - - (iii)
Now let tanx=t(iv)\tan x = t - - - - (iv)
Differentiating the equation (iv) with respect to x, we get
sec2xdx=dt{\sec ^2}xdx = dt
Substituting the value of tanx=t\tan x = tand sec2xdx=dt{\sec ^2}xdx = dtin integral I in the equation (iii), we get

I=sec2xtanx(tan9x+1)dx =dtt(t9+1)(v)  I = \int {\dfrac{{{{\sec }^2}x}}{{\tan x\left( {{{\tan }^9}x + 1} \right)}}} dx \\\ = \int {\dfrac{{dt}}{{t\left( {{t^9} + 1} \right)}}} - - - - (v) \\\

Take t9{t^9} common form the terms in the denominator of the equation (v) as:

I=dtt(t9+1) =dtt10(1+1t9)(vi)  I = \int {\dfrac{{dt}}{{t\left( {{t^9} + 1} \right)}}} \\\ = \int {\dfrac{{dt}}{{{t^{10}}\left( {1 + \dfrac{1}{{{t^9}}}} \right)}}} - - - - (vi) \\\

Let, 1+1t9=v(vii)1 + \dfrac{1}{{{t^9}}} = v - - - - (vii)
Differentiate the equation (vii) with respect to ‘t’ we get
ddt(1+1t9)=dvdt 09t10=dvdt dvdt=9t10 dt=t109dv  \dfrac{d}{{dt}}\left( {1 + \dfrac{1}{{{t^9}}}} \right) = \dfrac{{dv}}{{dt}} \\\ 0 - \dfrac{9}{{{t^{10}}}} = \dfrac{{dv}}{{dt}} \\\ \dfrac{{dv}}{{dt}} = - \dfrac{9}{{{t^{10}}}} \\\ dt = \dfrac{{ - {t^{10}}}}{9}dv \\\
Now, substitute dt=t109dvdt = \dfrac{{ - {t^{10}}}}{9}dv and 1+1t9=v1 + \dfrac{1}{{{t^9}}} = v in the equation (vi), we get

I=dtt10(1+1t9) =(t109dv)t10×v =19dvv(viii)  I = \int {\dfrac{{dt}}{{{t^{10}}\left( {1 + \dfrac{1}{{{t^9}}}} \right)}}} \\\ = \int {\dfrac{{\left( {\dfrac{{ - {t^{10}}}}{9}dv} \right)}}{{{t^{10}} \times v}}} \\\ = \dfrac{{ - 1}}{9}\int {\dfrac{{dv}}{v}} - - - - (viii) \\\

Integrating the terms in the equation (viii), we get

I=19dvv =logv9+c(ix)  I = \dfrac{{ - 1}}{9}\int {\dfrac{{dv}}{v}} \\\ = \dfrac{{ - \log \left| v \right|}}{9} + c - - - - (ix) \\\

Now, back substituting the values from equation (vii) to the equation (ix), we get

I=logv9+c =log1+1t99+c(x)  I = \dfrac{{ - \log \left| v \right|}}{9} + c \\\ = \dfrac{{ - \log \left| {1 + \dfrac{1}{{{t^9}}}} \right|}}{9} + c - - - - (x) \\\

Again back substituting the values from the equation (iv) to the equation (x), we get

I=log1+1t99+c =log1+1tan9x9+c(xi)  I = \dfrac{{ - \log \left| {1 + \dfrac{1}{{{t^9}}}} \right|}}{9} + c \\\ = \dfrac{{ - \log \left| {1 + \dfrac{1}{{{{\tan }^9}x}}} \right|}}{9} + c - - - - (xi) \\\

Replace tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}} in the equation (xi), we get

I=log1+1tan9x9+c =log1+cos9xsin9x9+c  I = \dfrac{{ - \log \left| {1 + \dfrac{1}{{{{\tan }^9}x}}} \right|}}{9} + c \\\ = \dfrac{{ - \log \left| {1 + \dfrac{{{{\cos }^9}x}}{{{{\sin }^9}x}}} \right|}}{9} + c \\\

On further simplifying:

I=log1+cos9xsin9x9+c =logsin9x+cos9xsin9x9+c =19logsin9x+cos9xsin9x+c =19log(sin9x+cos9xsin9x)1+c =19logsin9xsin9x+cos9x+c  I = \dfrac{{ - \log \left| {1 + \dfrac{{{{\cos }^9}x}}{{{{\sin }^9}x}}} \right|}}{9} + c \\\ = \dfrac{{ - \log \left| {\dfrac{{{{\sin }^9}x + {{\cos }^9}x}}{{{{\sin }^9}x}}} \right|}}{9} + c \\\ = \dfrac{{ - 1}}{9}\log \left| {\dfrac{{{{\sin }^9}x + {{\cos }^9}x}}{{{{\sin }^9}x}}} \right| + c \\\ = \dfrac{1}{9}\log \left| {{{\left( {\dfrac{{{{\sin }^9}x + {{\cos }^9}x}}{{{{\sin }^9}x}}} \right)}^{ - 1}}} \right| + c \\\ = \dfrac{1}{9}\log \left| {\dfrac{{{{\sin }^9}x}}{{{{\sin }^9}x + {{\cos }^9}x}}} \right| + c \\\

Hence, 1sinxcosx(tan9x+1)dx=19logsin9xsin9x+cos9x+c\int {\dfrac{1}{{\sin x\cos x\left( {{{\tan }^9}x + 1} \right)}}} dx = \dfrac{1}{9}\log \left| {\dfrac{{{{\sin }^9}x}}{{{{\sin }^9}x + {{\cos }^9}x}}} \right| + c

Option B is correct.

Important equations used:
cos2θ=2cos2θ1\cos 2\theta = 2{\cos ^2}\theta - 1
sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B
dx=x+c\int {dx = x + c}
tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}
secx=1cosx\sec x = \dfrac{1}{{\cos x}}

Note: While substituting the real parameter of the question with the auxiliary parameter, one should be sure that it will not make the problem more complex. However, selecting an auxiliary parameter completely depends on the individual point of view.