Solveeit Logo

Question

Question: Find the value of \[\int {\dfrac{1}{{{{\left( {2\sin x + 3\cos x} \right)}^2}}}dx} \]. A) \[\dfrac...

Find the value of 1(2sinx+3cosx)2dx\int {\dfrac{1}{{{{\left( {2\sin x + 3\cos x} \right)}^2}}}dx} .
A) 12(2tanx3)\dfrac{1}{{2\left( {2\tan x - 3} \right)}}
B) 12(tanx+3)\dfrac{1}{{2\left( {\tan x + 3} \right)}}
C) 12(2tanx+3) - \dfrac{1}{{2\left( {2\tan x + 3} \right)}}
D) 12(2tanx3) - \dfrac{1}{{2\left( {2\tan x - 3} \right)}}

Explanation

Solution

Here, we will first divide the numerator and denominator by cos2(x){\cos ^2}\left( x \right) in the above equation and use the value 1cosx=secx\dfrac{1}{{\cos x}} = \sec x and sinxcosx=tanx\dfrac{{\sin x}}{{\cos x}} = \tan x in the obtained expression. Then we will take u=tanxu = \tan x, then differentiating it with respect to xx and substitute u=tanxu = \tan x and take v=2u+3v = 2u + 3, then differentiating it with respect to uu. Then we will substitute v=2u+3v = 2u + 3and apply the power rule, vndv=vn+1n+1\int {{v^n}dv} = \dfrac{{{v^{n + 1}}}}{{n + 1}} in the equation and then substitute back the values to find the required value.

Complete step by step solution:
We are given that
1(2sinx+3cosx)2dx\int {\dfrac{1}{{{{\left( {2\sin x + 3\cos x} \right)}^2}}}dx}
Dividing the numerator and denominator by cos2(x){\cos ^2}\left( x \right) in the above equation, we get

1cos2x(2sinx+3cosx)2cos2xdx 1cos2x(2sinxcosx+3cosxcosx)2dx 1cos2x(2sinxcosx+3)2dx  \Rightarrow \int {\dfrac{{\dfrac{1}{{{{\cos }^2}x}}}}{{\dfrac{{{{\left( {2\sin x + 3\cos x} \right)}^2}}}{{{{\cos }^2}x}}}}dx} \\\ \Rightarrow \int {\dfrac{{\dfrac{1}{{{{\cos }^2}x}}}}{{{{\left( {\dfrac{{2\sin x}}{{\cos x}} + \dfrac{{3\cos x}}{{\cos x}}} \right)}^2}}}dx} \\\ \Rightarrow \int {\dfrac{{\dfrac{1}{{{{\cos }^2}x}}}}{{{{\left( {\dfrac{{2\sin x}}{{\cos x}} + 3} \right)}^2}}}dx} \\\

Using the value 1cosx=secx\dfrac{1}{{\cos x}} = \sec x and sinxcosx=tanx\dfrac{{\sin x}}{{\cos x}} = \tan x in the above equation, we get
sec2x(2tanx+3)2dx ......eq.(1)\Rightarrow \int {\dfrac{{{{\sec }^2}x}}{{{{\left( {2\tan x + 3} \right)}^2}}}dx} {\text{ ......eq.(1)}}
Taking u=tanxu = \tan x, then differentiating it with respect to xx, we get
dudx=sec2x\Rightarrow \dfrac{{du}}{{dx}} = {\sec ^2}x
Cross-multiplying the above equation, we get
du=sec2xdx\Rightarrow du = {\sec ^2}xdx
Substituting u=tanxu = \tan xand the above equation in the equation (1), we get
1(2u+3)2du ......eq.(2)\Rightarrow \int {\dfrac{1}{{{{\left( {2u + 3} \right)}^2}}}du} {\text{ ......eq.(2)}}
Taking v=2u+3v = 2u + 3, then differentiating it with respect to uu, we get
dvdu=2\Rightarrow \dfrac{{dv}}{{du}} = 2
Cross-multiplying the above equation, we get
du=12dv\Rightarrow du = \dfrac{1}{2}dv
Substituting v=2u+3v = 2u + 3and the above equation in the equation (2), we get
121v2du\Rightarrow \dfrac{1}{2}\int {\dfrac{1}{{{v^2}}}du}
Applying the power rule, vndv=vn+1n+1\int {{v^n}dv} = \dfrac{{{v^{n + 1}}}}{{n + 1}} in the above equation, we get

(v2+1(2+1)) v1 1v  \Rightarrow \left( {\dfrac{{{v^{ - 2 + 1}}}}{{\left( { - 2 + 1} \right)}}} \right) \\\ \Rightarrow - {v^{ - 1}} \\\ \Rightarrow - \dfrac{1}{v} \\\

Substituting 2u+3=v2u + 3 = vand the above equation, we get
12u+3\Rightarrow - \dfrac{1}{{2u + 3}}
Substituting tanx=u\tan x = uin the above equation, we get
12(2tanx+3)\Rightarrow - \dfrac{1}{{2\left( {2\tan x + 3} \right)}}

Hence, option C is correct.

Note:
We need to know that while finding the value of indefinite integral, we have to add the constant in the final answer or else the answer will be incomplete. But since the options did not have any constant so we do not have to write it here. We have to be really thorough with the integrations and differentiation of the functions. The key point in this question is to use the substitution and integration rule,vndv=vn+1n+1\int {{v^n}dv} = \dfrac{{{v^{n + 1}}}}{{n + 1}} to solve this problem. Do not forget that many integrals can be evaluated in multiple ways and so more than one technique may be used on it, but this problem can only be solved by parts.