Solveeit Logo

Question

Question: Find the value of \[\int {\dfrac{1}{{3 + 2\sin x + \cos x}}dx} \] ....

Find the value of 13+2sinx+cosxdx\int {\dfrac{1}{{3 + 2\sin x + \cos x}}dx} .

Explanation

Solution

Here we will write all the terms in the form of tanx\tan x by using the below-mentioned formulas:
sinx=2tanx21+tan2x2\sin x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}} , cosx=1tan2x21+tan2x2\cos x = \dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}} and tanx=2tanx21tan2x2\tan x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 - {{\tan }^2}\dfrac{x}{2}}} .

Complete step-by-step solution:
Step 1: We will replace the terms sinx\sin x and cosx\cos x by substituting the values of them in the form of tanx\tan x as shown below:
I=13+2(2tanx21+tan2x2)+(1tan2x21+tan2x2)dxI = \int {\dfrac{1}{{3 + 2\left( {\dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}} \right) + \left( {\dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}} \right)}}dx}
By opening the brackets and multiplying 22inside the term (2tanx21+tan2x2)\left( {\dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}} \right) , we get:
I=14tanx21+tan2x2+1tan2x21+tan2x2+3dx\Rightarrow I = \int {\dfrac{1}{{\dfrac{{4\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}} + \dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}} + 3}}dx} ……………………….. (1)
Step 2: By taking 1+tan2x21 + {\tan ^2}\dfrac{x}{2} common from the denominator and adding the numerator terms in the above expression (1), we get:
I=14tanx2+3(1+tan2x2)+(1tan2x2)1+tan2x2dx\Rightarrow I = \int {\dfrac{1}{{\dfrac{{4\tan \dfrac{x}{2} + 3\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right) + \left( {1 - {{\tan }^2}\dfrac{x}{2}} \right)}}{{1 + {{\tan }^2}\dfrac{x}{2}}}}}dx}
By bringing 1+tan2x21 + {\tan ^2}\dfrac{x}{2} into the numerator position, we get:
I=1+tan2x24tanx2+3(1+tan2x2)+(1tan2x2)dx\Rightarrow I = \int {\dfrac{{1 + {{\tan }^2}\dfrac{x}{2}}}{{4\tan \dfrac{x}{2} + 3\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right) + \left( {1 - {{\tan }^2}\dfrac{x}{2}} \right)}}dx} ………….. (2)
As we know that 1+tan2x2=sec2x21 + {\tan ^2}\dfrac{x}{2} = {\sec ^2}\dfrac{x}{2} , so by replacing it in the above expression (2), we get:
I=sec2x24tanx2+3(1+tan2x2)+(1tan2x2)dx\Rightarrow I = \int {\dfrac{{{{\sec }^2}\dfrac{x}{2}}}{{4\tan \dfrac{x}{2} + 3\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right) + \left( {1 - {{\tan }^2}\dfrac{x}{2}} \right)}}dx}
By opening the brackets in the denominator of the above expression we get:
I=sec2x24tanx2+3+3tan2x2+1tan2x2dx\Rightarrow I = \int {\dfrac{{{{\sec }^2}\dfrac{x}{2}}}{{4\tan \dfrac{x}{2} + 3 + 3{{\tan }^2}\dfrac{x}{2} + 1 - {{\tan }^2}\dfrac{x}{2}}}dx}
By doing simple addition and subtraction in the denominator part of the above expression we get:
I=sec2x24tanx2+2tan2x2+4dx\Rightarrow I = \int {\dfrac{{{{\sec }^2}\dfrac{x}{2}}}{{4\tan \dfrac{x}{2} + 2{{\tan }^2}\dfrac{x}{2} + 4}}dx} …………………… (3)
Step 3: Now, we will assume that tanx2=t\tan \dfrac{x}{2} = t and differentiating it w.r.t tt , we get:
sec2(x2)×12dx=dt\Rightarrow {\sec ^2}\left( {\dfrac{x}{2}} \right) \times \dfrac{1}{2}dx = dt
We can write the above expression as below by bringing 22 into the RHS side:
sec2(x2)dx=2dt\Rightarrow {\sec ^2}\left( {\dfrac{x}{2}} \right)dx = 2dt
By substituting these values in the expression (3), we get:
I=2dt4t+2t2+4\Rightarrow I = \int {\dfrac{{2dt}}{{4t + 2{\operatorname{t} ^2} + 4}}} (tanx2=t,sec2x2dx=2dt)\left( {\because \tan \dfrac{x}{2} = t,{{\sec }^2}\dfrac{x}{2}dx = 2dt} \right)
By dividing the RHS side with 22, we get:
I=dt2t+t2+2\Rightarrow I = \int {\dfrac{{dt}}{{2t + {\operatorname{t} ^2} + 2}}}
By writing the term 2t+t2+2=(t+1)2+(1)22t + {\operatorname{t} ^2} + 2 = {\left( {t + 1} \right)^2} + {\left( 1 \right)^2}in the RHS side of the expression I=dt2t+t2+2I = \int {\dfrac{{dt}}{{2t + {\operatorname{t} ^2} + 2}}} , we get:
I=dt(t+1)2+(1)2\Rightarrow I = \int {\dfrac{{dt}}{{{{\left( {t + 1} \right)}^2} + {{\left( 1 \right)}^2}}}} …………………. (4)
Step 4: As we know that 1x2+a2dx=1atan1xa+c\dfrac{1}{{{x^2} + {a^2}}}dx = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + {\text{c}} , where c{\text{c}} is an arbitrary constant. Comparing the above expression (4) with this formula, we get:
I=11tan1(t+1)1+c\Rightarrow I = \dfrac{1}{1}{\tan ^{ - 1}}\dfrac{{\left( {t + 1} \right)}}{1} + {\text{c}}
By substituting the value of t=tanx2t = \tan \dfrac{x}{2} , in the above expression we get:
I=tan1(tanx2+1)+c\Rightarrow I = {\tan ^{ - 1}}\left( {\tan \dfrac{x}{2} + 1} \right) + {\text{c}}

\therefore The value of 13+2sinx+cosxdx=tan1(tanx2+1)+c\int {\dfrac{1}{{3 + 2\sin x + \cos x}}dx} = {\tan ^{ - 1}}\left( {\tan \dfrac{x}{2} + 1} \right) + {\text{c}}

Note: In solving these types of question students should remember some basic formulas as given below:
sinx=2tanx21+tan2x2\sin x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}} , cosx=1tan2x21+tan2x2\cos x = \dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}} and tanx=2tanx21tan2x2\tan x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 - {{\tan }^2}\dfrac{x}{2}}} , these are known as tangent half-angle formulas.
1x2+a2dx=1atan1xa+c\dfrac{1}{{{x^2} + {a^2}}}dx = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + {\text{c}} , proof of which is showing below:
Suppose we need to evaluate the integral 1x2+a2dx\dfrac{1}{{{x^2} + {a^2}}}dx for a0a \ne 0. So, by multiplying and dividing the expression with a2{a^2} , we get:
1x2+a2dx=11+x2a2dxa2\Rightarrow \int {\dfrac{1}{{{x^2} + {a^2}}}dx = \int {\dfrac{1}{{1 + \dfrac{{{x^2}}}{{{a^2}}}}}\dfrac{{dx}}{{{a^2}}}} }
Now by writing the terms xa=u\dfrac{x}{a} = u and differentiating it, we get:
dxa=du\Rightarrow \dfrac{{dx}}{a} = du
By substituting this value in the above expression 1x2+a2dx=11+x2a2dxa2\int {\dfrac{1}{{{x^2} + {a^2}}}dx = \int {\dfrac{1}{{1 + \dfrac{{{x^2}}}{{{a^2}}}}}\dfrac{{dx}}{{{a^2}}}} } , we get:
dxx2+a2=1adu1+u2\Rightarrow \int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{a}\int {\dfrac{{du}}{{1 + {u^2}}}} }
We can write the above expression as below:
dxx2+a2=1atan1u+c\Rightarrow \int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{a}{{\tan }^{ - 1}}u + {\text{c}}} , where c{\text{c}} is an arbitrary constant.
By substituting the value of xa=u\dfrac{x}{a} = u in the above expression, we get:
dxx2+a2=1atan1xa+c\Rightarrow \int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{a}{{\tan }^{ - 1}}\dfrac{x}{a} + {\text{c}}}