Solveeit Logo

Question

Question: Find the value of (i)\(\sin {{120}^{\circ }}\) (ii)\(\cos (-{{300}^{\circ }})\)...

Find the value of
(i)sin120\sin {{120}^{\circ }}
(ii)cos(300)\cos (-{{300}^{\circ }})

Explanation

Solution

Hint: Here, sin120\sin {{120}^{\circ }} can be written as sin120=sin(90+30)\sin {{120}^{{}^\circ }}=\sin ({{90}^{\circ }}+{{30}^{\circ }}) or sin120=sin(18060)\sin {{120}^{{}^\circ }}=\sin ({{180}^{\circ }}-{{60}^{\circ }}) and cos(300)=cos(300)\cos (-{{300}^{{}^\circ }})=\cos ({{300}^{{}^\circ }}) can be written as cos(300)=cos(180+120)\cos ({{300}^{{}^\circ }})=\cos ({{180}^{\circ }}+{{120}^{\circ }}), then apply the formulas:
sin(A+B)=sinAcosB+cosAsinB sin(AB)=sinAcosBcosAsinB cos(A+B)=cosAcosBsinAsinB cos(AB)=cosAcosB+sinAsinB \begin{aligned} & \sin (A+B)=\sin A\cos B+\cos A\sin B \\\ & \sin (A-B)=\sin A\cos B-\cos A\sin B \\\ & \cos (A+B)=\cos A\cos B-\sin A\sin B \\\ & \cos (A-B)=\cos A\cos B+\sin A\sin B \\\ \end{aligned}

Complete step-by-step answer:
(i) sin120\sin {{120}^{\circ }}
Here, we can write:
sin120=sin(90+30) ..... (1)\sin {{120}^{{}^\circ }}=\sin ({{90}^{\circ }}+{{30}^{\circ }})\text{ }.....\text{ (1)}
The above equation is of the form sin(A+B)\sin (A+B) where A=90A={{90}^{\circ }} and B=30B={{30}^{\circ }} We have the formula:
sin(A+B)=sinAcosB+cosAsinB\sin (A+B)=\sin A\cos B+\cos A\sin B
By applying the formula we get:
sin(90+30)=sin90cos30+cos90sin30\Rightarrow \sin ({{90}^{\circ }}+{{30}^{\circ }})=\sin {{90}^{\circ }}\cos {{30}^{\circ }}+\cos {{90}^{\circ }}\sin {{30}^{\circ }}
Since, we know that:
sin90=1 cos90=0 sin30=12 cos30=32 \begin{aligned} & \sin {{90}^{\circ }}=1 \\\ & \cos {{90}^{\circ }}=0 \\\ & \sin {{30}^{\circ }}=\dfrac{1}{2} \\\ & \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} \\\ \end{aligned}
Our equation becomes:
sin(90+30)=1×32+0×12 sin(90+30)=32+0 sin(90+30)=32 ..... (2) \begin{aligned} & \Rightarrow \sin ({{90}^{\circ }}+{{30}^{\circ }})=1\times \dfrac{\sqrt{3}}{2}+0\times \dfrac{1}{2} \\\ & \Rightarrow \sin ({{90}^{\circ }}+{{30}^{\circ }})=\dfrac{\sqrt{3}}{2}+0 \\\ & \Rightarrow \sin ({{90}^{\circ }}+{{30}^{\circ }})=\dfrac{\sqrt{3}}{2}\text{ }.....\text{ (2)} \\\ \end{aligned}
Hence, by substituting equation (2) in equation (1) we obtain:
sin120=32\sin {{120}^{{}^\circ }}=\dfrac{\sqrt{3}}{2}
OR

Alternatively, you can also prove this by applying the formula:
sin(90+A)=cosA\sin ({{90}^{\circ }}+A)=\cos A.
Therefore, we will get:
sin(90+30)=cos30\Rightarrow \sin ({{90}^{\circ }}+{{30}^{\circ }})=\cos {{30}^{\circ }}
We know that cos30=32\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}. Hence, we will get:
sin(90+30)=32 sin120=32 \begin{aligned} & \Rightarrow \sin ({{90}^{\circ }}+{{30}^{\circ }})=\dfrac{\sqrt{3}}{2} \\\ & \Rightarrow \sin {{120}^{\circ }}=\dfrac{\sqrt{3}}{2} \\\ \end{aligned}
OR

We can also write sin120\sin {{120}^{\circ }}as,
sin120=sin(18060)\sin {{120}^{{}^\circ }}=\sin ({{180}^{\circ }}-{{60}^{\circ }})
The above equation is of the form sin(A+B)\sin (A+B) where A=90A={{90}^{\circ }} and B=30B={{30}^{\circ }}, we have the formula:
sin(AB)=sinAcosBcosAsinB\sin (A-B)=\sin A\cos B-\cos A\sin B
By applying the above formula we get:
sin(18060)=sin180cos60cos180sin60 ..... (4)\Rightarrow \sin ({{180}^{\circ }}-{{60}^{\circ }})=\sin {{180}^{\circ }}\cos {{60}^{\circ }}-\cos {{180}^{\circ }}\sin {{60}^{\circ }}\text{ }.....\text{ (4)}
Next, we have to find sin180\sin {{180}^{\circ }} and cos180\cos {{180}^{\circ }}
Now we can write:
sin180=sin(90+90)\sin {{180}^{\circ }}=\sin ({{90}^{\circ }}+{{90}^{\circ }})
We know that sin(90+A)=cosA\sin ({{90}^{\circ }}+A)=\cos A
Therefore, by applying this we will get:
sin180=sin(90+90)=cos90 sin180=cos90 \begin{aligned} & \sin {{180}^{\circ }}=\sin ({{90}^{\circ }}+{{90}^{\circ }})=\cos {{90}^{\circ }} \\\ & \Rightarrow \sin {{180}^{\circ }}=\cos {{90}^{\circ }} \\\ \end{aligned}
Since, cos90=0\cos {{90}^{\circ }}=0, we can say that
sin180=0\sin {{180}^{\circ }}=0.
Similarly, we can write:
cos180=cos(90+90)\cos {{180}^{\circ }}=\cos ({{90}^{\circ }}+{{90}^{\circ }})
We know that:
cos(90+A)=sinA\cos ({{90}^{\circ }}+A)=-\sin A.
Therefore, by applying this we will get:
cos180=cos(90+90) cos180=sin90 \begin{aligned} & \Rightarrow \cos {{180}^{\circ }}=\cos ({{90}^{\circ }}+{{90}^{\circ }}) \\\ & \Rightarrow \cos {{180}^{\circ }}=-\sin {{90}^{\circ }} \\\ \end{aligned}
We have,
sin90=1\sin {{90}^{\circ }}=1
Therefore, we will get:
cos180=1\Rightarrow \cos {{180}^{\circ }}=-1
Therefore, we have:
cos60=12 sin60=32 \begin{aligned} & \cos {{60}^{\circ }}=\dfrac{1}{2} \\\ & \text{sin}{{60}^{\circ }}=\dfrac{\sqrt{3}}{2} \\\ \end{aligned}
sin180=0\sin {{180}^{\circ }}=0
cos180=1\cos {{180}^{\circ }}=-1
By substituting all the above values in equation (4) we obtain:
sin(18060)=0×12(1)×32 sin(18060)=0+32 sin(18060)=32 \begin{aligned} & \Rightarrow \sin ({{180}^{\circ }}-{{60}^{\circ }})=0\times \dfrac{1}{2}-(-1)\times \dfrac{\sqrt{3}}{2} \\\ & \Rightarrow \sin ({{180}^{\circ }}-{{60}^{\circ }})=0+\dfrac{\sqrt{3}}{2} \\\ & \Rightarrow \sin ({{180}^{\circ }}-{{60}^{\circ }})=\dfrac{\sqrt{3}}{2} \\\ \end{aligned}
Hence, we can say that sin120=32\sin {{120}^{{}^\circ }}=\dfrac{\sqrt{3}}{2}.

cos(300)\cos \left( -{{300}^{\circ }} \right).
Next, we have to find the value of cos(300)\cos \left( -{{300}^{\circ }} \right)
We know that,
cos(A)=cosA\cos (-A)=\cos A
Therefore, we can write:
cos(300)=cos(300)\cos (-{{300}^{\circ }})=\cos ({{300}^{\circ }})
Now, we can write:
cos(300)=cos(180+120)\cos ({{300}^{\circ }})=\cos ({{180}^{\circ }}+{{120}^{\circ }})
The above equation is of the form cos(A+B)\cos (A+B) where A=180A={{180}^{\circ }} and B=120B={{120}^{\circ }}. By expansion we have:
cos(A+B)=cosAcosBsinAsinB\cos (A+B)=\cos A\cos B-\sin A\sin B
By applying the formula we get:
cos(180+120)=cos180cos120sin180sin120 .... (5)\cos ({{180}^{\circ }}+{{120}^{\circ }})=\cos {{180}^{\circ }}\cos {{120}^{\circ }}-\sin {{180}^{\circ }}\sin {{120}^{\circ }}\text{ }....\text{ (5)}
Now, we have to find, cos120\cos {{120}^{\circ }}.
cos120=cos(90+30)\cos {{120}^{\circ }}=\cos ({{90}^{\circ }}+{{30}^{\circ }})
We know that cos(90+A)=sin90\cos ({{90}^{\circ }}+A)=-\sin {{90}^{\circ }}.
Therefore, we can say that:
cos(90+30)=sin30 cos120=sin30 \begin{aligned} & \cos ({{90}^{\circ }}+{{30}^{\circ }})=-\sin {{30}^{\circ }} \\\ & \Rightarrow \cos {{120}^{\circ }}=-\sin {{30}^{\circ }} \\\ \end{aligned}
We have sin30=12\sin {{30}^{\circ }}=\dfrac{1}{2}.
Therefore, we will get:
cos120=12\cos {{120}^{\circ }}=-\dfrac{1}{2}
We know that:
cos180=1 sin180=0 sin120=32 cos120=12 \begin{aligned} & \cos {{180}^{\circ }}=-1 \\\ & \text{sin18}{{0}^{\circ }}=0 \\\ & \text{sin}{{120}^{\circ }}=\dfrac{\sqrt{3}}{2} \\\ & \cos {{120}^{\circ }}=-\dfrac{1}{2} \\\ \end{aligned}
By applying all these values in equation (5) we obtain:
cos(180+120)=1×120×32 cos(180+120)=12 cos(300)=12 \begin{aligned} & \cos ({{180}^{\circ }}+{{120}^{\circ }})=-1\times -\dfrac{1}{2}-0\times \dfrac{\sqrt{3}}{2} \\\ & \cos ({{180}^{\circ }}+{{120}^{\circ }})=\dfrac{1}{2} \\\ & \cos ({{300}^{\circ }})=\dfrac{1}{2} \\\ \end{aligned}
Therefore, we can say that cos(300)=12\cos (-{{300}^{\circ }})=\dfrac{1}{2}.

Note: Here, for finding cos(300)\cos ({{300}^{\circ }}) you can also apply the formula cos(36060)=cos60=12\cos ({{360}^{\circ }}-{{60}^{\circ }})=\cos {{60}^{\circ }}=\dfrac{1}{2}
Instead of expanding cos(180+120)\cos ({{180}^{\circ }}+{{120}^{\circ }}) if you know the formula, you can directly write:
cos(180+120)=cos120 cos(180+120)=(12) cos(180+120)=12 \begin{aligned} & \cos ({{180}^{\circ }}+{{120}^{\circ }})=-\cos {{120}^{\circ }} \\\ & \Rightarrow \cos ({{180}^{\circ }}+{{120}^{\circ }})=-\left( -\dfrac{1}{2} \right) \\\ & \Rightarrow \cos ({{180}^{\circ }}+{{120}^{\circ }})=\dfrac{1}{2} \\\ \end{aligned}.