Solveeit Logo

Question

Question: Find the value of given logarithmic expression \({\log _{{\pi }}}\tan \left( {0.25{{\pi }}} \right)\...

Find the value of given logarithmic expression logπtan(0.25π){\log _{{\pi }}}\tan \left( {0.25{{\pi }}} \right).

Explanation

Solution

Hint: To solve this problem we will first find the value of tangent function by converting the radian into degrees, and then solve the logarithmic function. The formula for these are-
π  rad=180o ab=cb=logac \begin{aligned} &{{\pi }}\;rad = {180^{\text{o}}} \\\ &{{\text{a}}^{\text{b}}} = {\text{c}} \Rightarrow {\text{b}} = {\log _{\text{a}}}{\text{c}} \\\ \end{aligned}

Complete step-by-step solution -
We will first solve the tangent function by using the given conversion, that is-
=tan(0.25×180) =tan45o=1 \begin{aligned} & = \tan \left( {0.25 \times 180} \right) \\\ & = \tan {45^o} = 1 \\\ \end{aligned}
So the expression is-
 =logπtan(0.25π)  =logπ1 Let  this  value  be  x, x=logπ1 Using  the  conversion, πx=1 \begin{aligned} \\\ & = {\log _{{\pi }}}\tan \left( {0.25{{\pi }}} \right) \ \\\ & = {\log _{{\pi }}}1\\\ & \text{Let}\;\text{this}\; \text{value}\; \text{be}\; {\text{x}}, \\\ & {\text{x}} = {\log _{{\pi }}}1 \\\ & \text{Using}\; \text{the}\; \text{conversion}, \\\ & {{\pi}^{\text{x}}} = 1 \\\ \end{aligned}
We know that if the power of any real number is 0, then the result is 1. So, we can write that x = 0
x = 0
logπtan(0.25π)=0{\log _{{\pi }}}\tan \left( {0.25{{\pi }}} \right)=0
This is the required answer.

Note: It is recommended that we solve the expression taking one function at a time. First solve the innermost function and proceed outwards step by step to get the required answer.