Solveeit Logo

Question

Question: Find the value of given limit \( \mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^2}}}{{\sin \pi x}} ...

Find the value of given limit limx11x2sinπx\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^2}}}{{\sin \pi x}}

Explanation

Solution

Hint : For limit problems in which the limit of the function is not zero, we will make the limit of the function first zero. This can be done by using substitution of x = a + h with h0h \to 0 and then simplifying the limit of the function so formed after substitution by using standard limit formulas.
sin(π+x)=sinx\sin \left( {\pi + x} \right) = - \sin x and limx0sinxx=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1

Complete step-by-step answer :
In the given limit problem we see that the limit of function is not zero.
Therefore, we first make the limit to zero by doing substitution.

Let x=1+hx = 1 + h where h0h \to 0
Substituting above value of ‘x’ in given limit function we have
limh01(1+h)2sinπ(1+h)\mathop {\lim }\limits_{h \to 0} \dfrac{{1 - {{\left( {1 + h} \right)}^2}}}{{\sin \pi \left( {1 + h} \right)}}

limh01(1+h)2sin(π+πh) limh01(1+h)2sin(πh)sin(π+θ)=sinθ limh01(1+h2+2h)sin(πh) limh011+h2+2hsin(πh) limh0h22hsin(πh) limh0h(h+2)sin(πh) limh0h(h+2)sin(πh)  \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - {{\left( {1 + h} \right)}^2}}}{{\sin \left( {\pi + \pi h} \right)}} \\\ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - {{\left( {1 + h} \right)}^2}}}{{ - \sin \left( {\pi h} \right)}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because \sin \left( {\pi + \theta } \right) = - \sin \theta \\\ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - \left( {1 + {h^2} + 2h} \right)}}{{ - \sin \left( {\pi h} \right)}} \\\ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{1 - 1 + {h^2} + 2h}}{{ - \sin \left( {\pi h} \right)}} \\\ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{ - {h^2} - 2h}}{{ - \sin \left( {\pi h} \right)}}\, \\\ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{ - h\left( {h + 2} \right)}}{{ - \sin \left( {\pi h} \right)}}\, \\\ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{h\left( {h + 2} \right)}}{{\sin \left( {\pi h} \right)}}\, \\\

Multiply and divide by πh\pi h in the denominator of the above equation.
limh0h(h+2)sin(πh)πh×πh\Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{h\left( {h + 2} \right)}}{{\dfrac{{\sin \left( {\pi h} \right)}}{{\pi h}} \times \pi h}}\,

limh0h(h+2)πh limh0(h+2)π  \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{h\left( {h + 2} \right)}}{{\pi h}}\, \\\ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {h + 2} \right)}}{\pi }\, \\\

Substituting limit h0h \to 0 we have
2π\dfrac{2}{\pi }
Hence, from above we see that limit of the function limx11x2sinπx\mathop {\lim }\limits_{x \to 1} \dfrac{{1 - {x^2}}}{{\sin \pi x}} is 2π\dfrac{2}{\pi } .

Note : For all limits problems if limit is not zero then first make its limit zero by substitution and then using standard formulas of limits like limx0sinxx=1,limx0tanxx=1andlimx0cosx=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1,\,\,\mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x} = 1\,\,and\,\,\mathop {\lim }\limits_{x \to 0} \cos x = 1 to evaluate limit of the function so formed after substitution.