Question
Question: Find the value of given limit:-\[\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^{\tan x}} - {e^x}}}{{\t...
Find the value of given limit:-x→0limtanx−xetanx−ex=
(a) 21
(b) 0
(c) 1
(d) None
Solution
Here, we need to find the value of the given expression. We will simplify the value of the expression using rules of limits. Then, we will use substitution and L’Hopital’s rule to find the required value of the given expression.
Formula Used:
We will use the following formulas:
1.The expression of the form ⇒x→0lim[f(x)g(x)]=x→0lim[f(x)]×x→0lim[g(x)] can be written as by splitting the limits.
2.L’Hopital’s rule states that x→0limg(x)f(x)=x→0limg′(x)f′(x).
3.The derivative of the function of the form ex, is given as ex.
4.The derivative of a constant is always 0.
5.The derivative of the variable with respect to itself is 1.
Complete step-by-step answer:
We will simplify the value of the expression using rules of limits, and L’Hopital’s rule.
First, we will simplify using the rules of limits.
Rewriting the expression, we get
⇒x→0limtanx−xetanx−ex=x→0limtanx−xetanx+x−x−ex+0
Therefore, we get
⇒x→0limtanx−xetanx−ex=x→0limtanx−xexetanx−x−exe0
Factoring out ex from the numerator, we get
⇒x→0limtanx−xetanx−ex=x→0limtanx−xex(etanx−x−e0)
Rewriting the expression, we get
⇒x→0limtanx−xetanx−ex=x→0lim(ex×tanx−xetanx−x−e0)
The expression of the form ⇒x→0lim[f(x)g(x)]=x→0lim[f(x)]×x→0lim[g(x)] can be written as by splitting the limits.
Therefore, we get
⇒x→0lim(ex×tanx−xetanx−x−e0)=x→0lim(ex)×x→0lim(tanx−xetanx−x−e0)
Substituting x→0lim(ex×tanx−xetanx−x−e0)=x→0lim(ex)×x→0lim(tanx−xetanx−x−e0) in the equation, we get
⇒x→0limtanx−xetanx−ex=x→0lim(ex)×x→0lim(tanx−xetanx−x−e0)
Substituting the limit in the first expression of the product, we get
⇒x→0limtanx−xetanx−ex=e0×x→0lim(tanx−xetanx−x−e0)
The value of any number raised to the power 0 is 1.
Thus, we get
⇒e0=1
Substituting e0=1 in the equation, we get
⇒x→0limtanx−xetanx−ex=1×x→0lim(tanx−xetanx−x−1)
Multiplying the terms, we get
⇒x→0limtanx−xetanx−ex=x→0lim(tanx−xetanx−x−1)
Now, we will use substitution.
Let tanx−x=t.
If x approaches 0, then the tangent of x also approaches 0.
Therefore, we get
If x→0, then tanx−x→0
Thus, we get
If x→0, then t→0
Substituting the new limit in the equation x→0limtanx−xetanx−ex=x→0lim(tanx−xetanx−x−1), we get
⇒x→0limtanx−xetanx−ex=t→0lim(tet−1)
Now, we will use L’Hopital’s rule to simplify the expression.
L’Hopital’s rule states that x→0limg(x)f(x)=x→0limg′(x)f′(x).
Applying the L’Hopital’s rule, we get
⇒t→0lim(tet−1)=t→0limdtd(t)dtd(et−1)
The numerator is the derivative of the difference of two functions.
Therefore, rewriting the expression, we get
⇒t→0lim(tet−1)=t→0limdtd(t)dtd(et)−dtd(1)
The derivative of the function of the form ex, is given as ex.
The derivative of a constant is always 0.
The derivative of the variable with respect to itself is 1.
Simplifying the equation, we get
⇒t→0lim(tet−1)=t→0lim1et−0
Therefore, we get
⇒t→0lim(tet−1)=t→0lim1et ⇒t→0lim(tet−1)=t→0lim(et)
Substituting the limit in the first expression of the product, we get
⇒t→0lim(tet−1)=e0
Substituting e0=1 in the equation, we get
⇒t→0lim(tet−1)=1
Substituting t→0lim(tet−1)=x→0limtanx−xetanx−ex in the equation, we get
⇒x→0limtanx−xetanx−ex=1
Therefore, we get the value of the expression x→0limtanx−xetanx−ex as 1.
Thus, the correct option is option (c).
Note: We rewrote dtd(et−1) as dtd(et)−dtd(1). This is because the derivative of the difference of more than one functions is equal to the difference of the derivative of the individual functions, that is dxd(p(x)−q(x))=dxd(p(x))−dxd(q(x)).
L’Hopital’s rule is only applicable if the expression is indeterminate, that is of the form 00.
We can observe that by substituting the limit in the expression t→0lim(tet−1), we get
⇒t→0lim(tet−1)=0e0−1
Therefore, we get
⇒t→0lim(tet−1)=01−1 ⇒t→0lim(tet−1)=00
Since t→0lim(tet−1) is of the form 00, we can apply the L’Hopital’s rule.