Solveeit Logo

Question

Question: Find the value of given limit:-\[\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^{\tan x}} - {e^x}}}{{\t...

Find the value of given limit:-limx0etanxextanxx=\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^{\tan x}} - {e^x}}}{{\tan x - x}} =
(a) 12\dfrac{1}{2}
(b) 0
(c) 1
(d) None

Explanation

Solution

Here, we need to find the value of the given expression. We will simplify the value of the expression using rules of limits. Then, we will use substitution and L’Hopital’s rule to find the required value of the given expression.

Formula Used:
We will use the following formulas:
1.The expression of the form limx0[f(x)g(x)]=limx0[f(x)]×limx0[g(x)] \Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {f\left( x \right)g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 0} \left[ {f\left( x \right)} \right] \times \mathop {\lim }\limits_{x \to 0} \left[ {g\left( x \right)} \right] can be written as by splitting the limits.
2.L’Hopital’s rule states that limx0f(x)g(x)=limx0f(x)g(x)\mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}.
3.The derivative of the function of the form ex{e^x}, is given as ex{e^x}.
4.The derivative of a constant is always 0.
5.The derivative of the variable with respect to itself is 1.

Complete step-by-step answer:
We will simplify the value of the expression using rules of limits, and L’Hopital’s rule.
First, we will simplify using the rules of limits.
Rewriting the expression, we get
limx0etanxextanxx=limx0etanx+xxex+0tanxx\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^{\tan x}} - {e^x}}}{{\tan x - x}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^{\tan x + x - x}} - {e^{x + 0}}}}{{\tan x - x}}
Therefore, we get
limx0etanxextanxx=limx0exetanxxexe0tanxx\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^{\tan x}} - {e^x}}}{{\tan x - x}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x}{e^{\tan x - x}} - {e^x}{e^0}}}{{\tan x - x}}
Factoring out ex{e^x} from the numerator, we get
limx0etanxextanxx=limx0ex(etanxxe0)tanxx\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^{\tan x}} - {e^x}}}{{\tan x - x}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x}\left( {{e^{\tan x - x}} - {e^0}} \right)}}{{\tan x - x}}
Rewriting the expression, we get
limx0etanxextanxx=limx0(ex×etanxxe0tanxx)\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^{\tan x}} - {e^x}}}{{\tan x - x}} = \mathop {\lim }\limits_{x \to 0} \left( {{e^x} \times \dfrac{{{e^{\tan x - x}} - {e^0}}}{{\tan x - x}}} \right)
The expression of the form limx0[f(x)g(x)]=limx0[f(x)]×limx0[g(x)] \Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {f\left( x \right)g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 0} \left[ {f\left( x \right)} \right] \times \mathop {\lim }\limits_{x \to 0} \left[ {g\left( x \right)} \right] can be written as by splitting the limits.
Therefore, we get
limx0(ex×etanxxe0tanxx)=limx0(ex)×limx0(etanxxe0tanxx)\Rightarrow \mathop {\lim }\limits_{x \to 0} \left( {{e^x} \times \dfrac{{{e^{\tan x - x}} - {e^0}}}{{\tan x - x}}} \right) = \mathop {\lim }\limits_{x \to 0} \left( {{e^x}} \right) \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^{\tan x - x}} - {e^0}}}{{\tan x - x}}} \right)
Substituting limx0(ex×etanxxe0tanxx)=limx0(ex)×limx0(etanxxe0tanxx)\mathop {\lim }\limits_{x \to 0} \left( {{e^x} \times \dfrac{{{e^{\tan x - x}} - {e^0}}}{{\tan x - x}}} \right) = \mathop {\lim }\limits_{x \to 0} \left( {{e^x}} \right) \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^{\tan x - x}} - {e^0}}}{{\tan x - x}}} \right) in the equation, we get
limx0etanxextanxx=limx0(ex)×limx0(etanxxe0tanxx)\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^{\tan x}} - {e^x}}}{{\tan x - x}} = \mathop {\lim }\limits_{x \to 0} \left( {{e^x}} \right) \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^{\tan x - x}} - {e^0}}}{{\tan x - x}}} \right)
Substituting the limit in the first expression of the product, we get
limx0etanxextanxx=e0×limx0(etanxxe0tanxx)\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^{\tan x}} - {e^x}}}{{\tan x - x}} = {e^0} \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^{\tan x - x}} - {e^0}}}{{\tan x - x}}} \right)
The value of any number raised to the power 0 is 1.
Thus, we get
e0=1\Rightarrow {e^0} = 1
Substituting e0=1{e^0} = 1 in the equation, we get
limx0etanxextanxx=1×limx0(etanxx1tanxx)\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^{\tan x}} - {e^x}}}{{\tan x - x}} = 1 \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^{\tan x - x}} - 1}}{{\tan x - x}}} \right)
Multiplying the terms, we get
limx0etanxextanxx=limx0(etanxx1tanxx)\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^{\tan x}} - {e^x}}}{{\tan x - x}} = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^{\tan x - x}} - 1}}{{\tan x - x}}} \right)
Now, we will use substitution.
Let tanxx=t\tan x - x = t.
If xx approaches 0, then the tangent of xx also approaches 0.
Therefore, we get
If x0x \to 0, then tanxx0\tan x - x \to 0
Thus, we get
If x0x \to 0, then t0t \to 0
Substituting the new limit in the equation limx0etanxextanxx=limx0(etanxx1tanxx)\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^{\tan x}} - {e^x}}}{{\tan x - x}} = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^{\tan x - x}} - 1}}{{\tan x - x}}} \right), we get
limx0etanxextanxx=limt0(et1t)\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^{\tan x}} - {e^x}}}{{\tan x - x}} = \mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{{e^t} - 1}}{t}} \right)
Now, we will use L’Hopital’s rule to simplify the expression.
L’Hopital’s rule states that limx0f(x)g(x)=limx0f(x)g(x)\mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}.
Applying the L’Hopital’s rule, we get
limt0(et1t)=limt0ddt(et1)ddt(t)\Rightarrow \mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{{e^t} - 1}}{t}} \right) = \mathop {\lim }\limits_{t \to 0} \dfrac{{\dfrac{d}{{dt}}\left( {{e^t} - 1} \right)}}{{\dfrac{d}{{dt}}\left( t \right)}}
The numerator is the derivative of the difference of two functions.
Therefore, rewriting the expression, we get
limt0(et1t)=limt0ddt(et)ddt(1)ddt(t)\Rightarrow \mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{{e^t} - 1}}{t}} \right) = \mathop {\lim }\limits_{t \to 0} \dfrac{{\dfrac{d}{{dt}}\left( {{e^t}} \right) - \dfrac{d}{{dt}}\left( 1 \right)}}{{\dfrac{d}{{dt}}\left( t \right)}}
The derivative of the function of the form ex{e^x}, is given as ex{e^x}.
The derivative of a constant is always 0.
The derivative of the variable with respect to itself is 1.
Simplifying the equation, we get
limt0(et1t)=limt0et01\Rightarrow \mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{{e^t} - 1}}{t}} \right) = \mathop {\lim }\limits_{t \to 0} \dfrac{{{e^t} - 0}}{1}
Therefore, we get
limt0(et1t)=limt0et1 limt0(et1t)=limt0(et)\begin{array}{l} \Rightarrow \mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{{e^t} - 1}}{t}} \right) = \mathop {\lim }\limits_{t \to 0} \dfrac{{{e^t}}}{1}\\\ \Rightarrow \mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{{e^t} - 1}}{t}} \right) = \mathop {\lim }\limits_{t \to 0} \left( {{e^t}} \right)\end{array}
Substituting the limit in the first expression of the product, we get
limt0(et1t)=e0\Rightarrow \mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{{e^t} - 1}}{t}} \right) = {e^0}
Substituting e0=1{e^0} = 1 in the equation, we get
limt0(et1t)=1\Rightarrow \mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{{e^t} - 1}}{t}} \right) = 1
Substituting limt0(et1t)=limx0etanxextanxx\mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{{e^t} - 1}}{t}} \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^{\tan x}} - {e^x}}}{{\tan x - x}} in the equation, we get
limx0etanxextanxx=1\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^{\tan x}} - {e^x}}}{{\tan x - x}} = 1
Therefore, we get the value of the expression limx0etanxextanxx\mathop {\lim }\limits_{x \to 0} \dfrac{{{e^{\tan x}} - {e^x}}}{{\tan x - x}} as 1.
Thus, the correct option is option (c).

Note: We rewrote ddt(et1)\dfrac{d}{{dt}}\left( {{e^t} - 1} \right) as ddt(et)ddt(1)\dfrac{d}{{dt}}\left( {{e^t}} \right) - \dfrac{d}{{dt}}\left( 1 \right). This is because the derivative of the difference of more than one functions is equal to the difference of the derivative of the individual functions, that is d(p(x)q(x))dx=d(p(x))dxd(q(x))dx\dfrac{{d\left( {p\left( x \right) - q\left( x \right)} \right)}}{{dx}} = \dfrac{{d\left( {p\left( x \right)} \right)}}{{dx}} - \dfrac{{d\left( {q\left( x \right)} \right)}}{{dx}}.
L’Hopital’s rule is only applicable if the expression is indeterminate, that is of the form 00\dfrac{0}{0}.
We can observe that by substituting the limit in the expression limt0(et1t)\mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{{e^t} - 1}}{t}} \right), we get
limt0(et1t)=e010\Rightarrow \mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{{e^t} - 1}}{t}} \right) = \dfrac{{{e^0} - 1}}{0}
Therefore, we get
limt0(et1t)=110 limt0(et1t)=00\begin{array}{l} \Rightarrow \mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{{e^t} - 1}}{t}} \right) = \dfrac{{1 - 1}}{0}\\\ \Rightarrow \mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{{e^t} - 1}}{t}} \right) = \dfrac{0}{0}\end{array}
Since limt0(et1t)\mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{{e^t} - 1}}{t}} \right) is of the form 00\dfrac{0}{0}, we can apply the L’Hopital’s rule.