Solveeit Logo

Question

Question: Find the value of following trigonometric function: \(\dfrac{{\sin {{35}^0}}}{{\cos {{55}^0}}} + \...

Find the value of following trigonometric function:
sin350cos550+tan370cot530\dfrac{{\sin {{35}^0}}}{{\cos {{55}^0}}} + \dfrac{{\tan {{37}^0}}}{{\cot {{53}^0}}}

Explanation

Solution

Hint: Try to break the angle as a sum of other angles with multiple of 900,1800,2700&3600{90^0},{180^0},{270^0} \& {360^0}. In order to solve this question we will use trigonometric identities such as
cos(90θ)=sinθ and cot(90θ)=tanθ\cos (90 - \theta ) = \sin \theta {\text{ and }}\cot (90 - \theta ) = \tan \theta

Complete step-by-step answer:
Given term is: sin350cos550+tan370cot530\dfrac{{\sin {{35}^0}}}{{\cos {{55}^0}}} + \dfrac{{\tan {{37}^0}}}{{\cot {{53}^0}}}
In order to make the term simpler, we will use the trigonometric identities to convert cosθcos {\theta} into sinθsin{\theta} and cotθcot{\theta} into tanθtan{\theta}
As we know the trigonometric identities
cos(90θ)=sinθ and cot(90θ)=tanθ\cos (90 - \theta ) = \sin \theta {\text{ and }}\cot (90 - \theta ) = \tan \theta
So we use the same in the above term
sin350cos550+tan370cot530 sin350cos(900350)+tan370cot(900370) sin350sin350+tan370tan370  \Rightarrow \dfrac{{\sin {{35}^0}}}{{\cos {{55}^0}}} + \dfrac{{\tan {{37}^0}}}{{\cot {{53}^0}}} \\\ \Rightarrow \dfrac{{\sin {{35}^0}}}{{\cos \left( {{{90}^0} - {{35}^0}} \right)}} + \dfrac{{\tan {{37}^0}}}{{\cot \left( {{{90}^0} - {{37}^0}} \right)}} \\\ \Rightarrow \dfrac{{\sin {{35}^0}}}{{\sin {{35}^0}}} + \dfrac{{\tan {{37}^0}}}{{\tan {{37}^0}}} \\\
Now let us simplify the terms by mere cancellation.
sin350sin350+tan370tan370 =1+1 =2  \Rightarrow \dfrac{{\sin {{35}^0}}}{{\sin {{35}^0}}} + \dfrac{{\tan {{37}^0}}}{{\tan {{37}^0}}} \\\ = 1 + 1 \\\ = 2 \\\
Hence, the value of given term sin350cos550+tan370cot530\dfrac{{\sin {{35}^0}}}{{\cos {{55}^0}}} + \dfrac{{\tan {{37}^0}}}{{\cot {{53}^0}}} is 2.

Note: To solve this question, we used the trigonometric identities and some manipulation. Whenever we have an unknown or random angle in the problem, whose trigonometric values are unknown, try to manipulate some angle by using trigonometric identities in order to cancel that term or to bring the angle in some known value. Remember the trigonometric identities.